Enye yezinto endinomdla ngazo zii-theory zokwakha nokunikezela iingxelo kubafundi bakho. Emaxesheni amaninzi xa ufundisa, uye wakhe iingxaki okanye uzithathe kwincwadi onayo, uzenze kunye nabafundi bakho eklasini. Ngoku ndandifunda kubamanga abantsi, ootishala babesenza le nto amaxesheni amaninzi (ayekhona amaxesha apho kulindeleke ingxaki uyisombulule ngowakho njengomfundi). Eyona nto ndiyikhumbulayo ngelixesha kukuba kwakulula kwaye kumnandi ukuzama ukusombulula ezo ngxaki, eklasini ninonke kunye notishala. Kwaye, le nto yayinjalo kuzo zonke izifundo, ukuqala kwisiXhosa (e.g., xa sihlalutya imibongo umzekelo) ukuya kwiMathematika.

Class participation

Kukho into endiyiqapheleyo kodwa ekufikeni edjunivesithi: amanani wabafundi eklasini enye makhulu, into ethi kukho abafundi abangaqhelananga. Le nto ibangela abanye abafundi bangathandi ukuthetha eklasini. Isizathu esikhulu esibangela le nto, mhlawumbi, zintloni. Ndiqinisekile ukuba ingasombululeka le nto ukuba singathoba amanani eklasini nganye edjunivesithi (+ usebenzise iindlela ezahlukeneyo zokwenza abafundi bakho baqhelane. Izinto ezifana nee Ice Breakers). Kunzima kodwa ukusombulula le ngxaki eluhlobo eMzantsi ngoba inani labafundi abasedjunivesithi liyenyuka, kwaye ingasebenza lo nto ukuba urhulumente wakha ezinye iidjunivesithi. Ngamanye amazwi, esi simbululo sixhomekeke kubantu abanzi — ayonto ungayenza ngokwakho njengotishala edjunivesithi.

Large classes

Mna, xa ndijonga abafundi eklasini ndibona ingathi ukuba ungabeka kwingqokelela ezintathu: abangenangxaki yokuthetha okanye ukubuza (ngqokelela yokuqala), abafunayo ukuthetha okanye ubuza — umntu angathetha ngamaxesha athile (ngqokelela yesibini), aboyikayo ukubuza okanye ukuthetha — aba bangathetha xa bengekho abanye abafundi (ngqokelela yesithathu). Le nto ivusa imibuzo emibini xa unikezela ingxelo kubafundi ngokubona kwam:

  1. Aba bakwingqokelala 1+2, ubangcina njani bekulangqokelela?
  2. Aba bakwingqokelela 3, uzisusa njani intloni ukwenzela bafane naba bakwezinye ingqokelela? Ukuba awukwazi ukubatshintsha, ubaxhasa njani?

Mna ndisebenzisa indlela ezixhomekeke kwi-theories ezixhaphakileyo. Ngenxa yokuba icala lam lophando yi NLG, ndizakuthetha ngazo ezi theory ndisebenzisa iNLG. Xa sijonga ezi theory zisetyenziswa ngabantu abakha iiNLG sistim zokwakha iingxelo, sibona intlobo ngentlobo zezinto kufuneka uzikwaqalasele. Ezi NLG sistim zakhiwa ngabantu zinentlobo ezintathu; kukho ezakhiwa ngumntu ofuna ukunikela iingxelo kubafunda abenza itutorial (e.g., Moore et al. 2004), ezineka ingxelo mayela nendlela umfundi enza ngayo kwi nto ethile (e.g., Williams and Reiter 2005 banikeza indlela abafunda+bhala ngayo), nezinekeza ingxelo mayela nento oyenza qho (e.g., Braun and Reiter 2018 banikezela iingxelo mayela nendlela aqhuba ngayo umntu). Ukhona nomsebenzi owenzwa ngabanye abantu kwelicala. Le nto ithi, xa usakha iqhinga lakho, kufuneka uyazi ukuba ungaxhomekeka ngee theory ezingafaniyo — yonke ixhomekeke kwiimeko ozibonayo ukuyo.

Possible architecture

Kuleveki, bendiqala ukufundisa icourse kwi Compilers, bendisebenzisa ezi theory xa ndisakha impendulo. Umqweno wam kukwenza lula ukubuza imibuzo eklasini, ukwakha impendulo ezicacilyo, etc. ukwenzela wonke umntu ayive le nto ifundiswayo. Into endizibuza yona kodwa ngoku kukuba ingaba ndingayimejarisha njani intsebenzo (see efficacy) yendlela endiqhuba ngayo? Ngokubona kwam, soze ndiyazi ukuba kukho into efuna utshintshwa ngaphandle kokuba ndiyakwazi ukumejarisha. Ngaphezulu koko, ukuba ndinendlela yokumejarisha, ndingaqala ukwakha iiNLG sistim ukwenzela umsebenzi ube lula. Ndingathelekisa neeNLG sistim ezimbini (ukuba ndinexesha yokwakha ezininzi), e.g., enye ingaphendula ngesiSotho vs. ephendule ngesiNgesi.

References
  1. Johanna D. Moore, Kaska Porayska-Pomsta, Sebastian Varges, and Claus Zinn. 2004. Generating tutorial feedback with affect. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, Miami Beach, Florida, USA, pages 923–928. AAAI Press
  2. Sandra Williams and Ehud Reiter. 2005. Generating readable texts for readers with low basic skills. In Proceedings of the Tenth European Workshop on Natural Language Generation, ENLG 2005, Aberdeen, UK, August 8-10, 2005. ACL
  3. Daniel Braun, Ehud Reiter, and Advaith Siddharthan. 2018. Saferdrive: An nlg-based behaviour change support system for drivers. Nat. Lang. Eng., 24(4):551–588