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for Generating Mathematics Problems
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Abstract. High school learners in low-income countries are negatively
impacted by the SARS Covid-19 pandemic. Consequently, university lec-
turers of mathematics will have to offer remedial classes to bridge the
gap. Since they cannot create practice problems at scale for each stu-
dent’s needs, there is a need for computational tools to do so. There are
no existing and published formalisations of mathematical problems that
abide by the South African curriculum to allow the automatic generation
of problems. We aim to address this gap by formalising exam problems
written by grade 12 South African learners in the period 2008–2020. We
evaluate the problem types by demonstrating 65% coverage of the 74
matric rewrite problems from the years 2011–2018. The presented prob-
lem formalisations allow the generation of maths problems to be used for
student-led remedial practice. AQ1

Keywords: Mathematics education · Mathematical formalisation ·
Controlled natural language · Natural language generation · Digital
educational tools

1 Introduction

Secondary education was negatively impacted in low-income countries after gov-
ernments announced lockdowns in response to the Covid-19 pandemic. When
the South African government announced relaxations to its first lockdown, the
department of Basic Education considered three models for re-opening schools
to avoid losing the entire year:

1. “two separate sets of teachers and pupils use the same school building [but]
one set [uses] in the morning [and another set] in the afternoon” [8]

2. “groups/grades of learners alternate classes/lessons on different days of the
week” [8]

3. “bi-weekly rotational attendance” [8]

All these considered models required that learners spend less time at school and
may require additional effort from high school teachers. This is likely to lead to
cohorts of first-year university learners who do not have the proper mathematics
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2 Z. Mahlaza

Fig. 1. Existing framework for validating and feedback provision. Abbreviations and
symbols used: p = problem, ai = answer step i, ci = correctness of answer step i, and
f = feedback.

foundation. Consequently, university lecturers will have to offer remedial classes.
A more attractive solution is the development and introduction of computer-
based education technologies to assist university lecturers.

Existing technology can already be used by university lectures to assist learn-
ers in accordance with the framework depicted in Fig. 1. In this framework, an
educator(s) manually creates a maths problem (p) and when a student is given
the problem, they produce a solution (s) that has multiple steps ({a1, ...,an}).
The validity of each step can be automatically checked by an answer valida-
tion service and the validated answer ({(a1, c1), ..., (an, cn)}), where cn

1 denote
the correctness of each step, is then used by the feedback generator to produce
feedback (f). This feedback is often limited to specifying that the answer is
correct/incorrect. The biggest challenge with this framework is that it requires
significant effort from the educator. We take the position that in order for these
remedial classes to be effective, the problems must take into account each stu-
dent’s proficiency and these must be produced in large volumes in order to cater
for large numbers of learners (e.g., Mathematics I at the University of Cape
Town had more than 458 learners in 2011 [4]). As such, we propose to modify
the architecture presented in Fig. 1 and introduce a module for automatically
generating mathematics problems that abide by the South African curriculum.
Such an approach would reduce effort from the educator and also allow learners
to have greater control over the types of problems that they need additional
practice on. For this paper, we focus only on the task of problem generation and
leave out answer validation and feedback generation for future work.

To the best of our knowledge, the only information system that has the
capability to generate mathematics problems geared to the South African cur-
riculum is a proprietary product created by Siyavula1. Currently, it is not pos-
sible to build a system that is open to all learners because there are no pub-
lished models of South African high school maths problems and the existing
government-issued curriculum statements2 are designed for humans and are not
detailed so as to allow the automatic generation of problems. There is also no
1 https://www.siyavula.com/.
2 https://wcedeportal.co.za/eresource/106331.
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Towards an Automated Assistant for Generating Mathematics Problems 3

controlled natural language for authoring such problems and no algorithms that
can automatically generate problems. In this paper, we propose to address this
gap by developing novel archetypes of high mathematics problems which we use
together with a novel controlled natural language (CNL) to create the Computer
Assistant for High School Mathematics (COMPAH). We have chosen to limit
the scope of COMPAH to the first topic that grade 12 learners find challenging,
namely sequences and series, after analysing the department of basic education’s
diagnostic reports from 2012–2020. To develop the assistant and its underlying
resources, we began by creating a corpus of sequences and series problems from
grade 12 exams papers from 2008–2020, analysing the corpus and formalising
the problems, extracting the archetypes for the various problem types, creating
templates for supported archetypes, and creating a tool that uses those resources
to generate problems. We evaluated the resources by demonstrating their cover-
age over a held-out portion of the created corpus and showed that the identified
problem types support 65% of the test set’s problems. If we do limit each prob-
lem type to a specific sequence and series type, where appropriate, then coverage
is 73%.

The rest of the paper is structured such that Sect. 2 examines existing work
on the generation of mathematics problems, Sect. 3 introduces the problem and
controlled natural language, Sect. 4 evaluates and discusses the coverage of the
extracted problem types, and Sect. 6 concludes.

2 Related Work

The only information system that can generate mathematical problems for the
South African curriculum is proprietary; hence, we can not determine the pre-
cise nature of how it is able to achieve this task. The company that develops
the system only states that it relies on the Python programming language and
custom exercise templates3 to generate problems. As such, we have to look at
the broader research community for related work. There are two strands of work
that generate mathematical problems, namely, those that come from the Natural
Language Processing (NLP) and educational psychology research communities.

NLP research has investigated the use of recurrent neural networks [10],
answer-set programming and traditional natural language generation techniques
[5], and pre-trained language models [9] to generate word problems, which may
sometimes be personalised to each student. The input to such systems varies
depending on the goal of their respective authors. For instance, Zhou et al.’s [10]
focus is generating problems that differ in style but test the same mathematical
knowledge. As such, the input to their model is a topic/style and equation—the
equation is not automatically generated. The goal of Polozov et al.’s [5] work
is to generate personalised maths problems and expect tutor/teacher and stu-
dent requirements as input. The tutor provides the properties of the equations
that underlie the problem to be generated. Specifically, they enter the operators
that can be used in the equation and also provide a template for the equations.
3 https://www.siyavulaeducation.com/technology-components.html.
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4 Z. Mahlaza

The student specifies the features that drive the narrative style of the problem.
For instance, they enter the theme of the story (e.g., fantasy) and the names,
genders, and relationships between the story’s characters. All the work on gen-
erating mathematics from the NLP community is not suitable for generating
problems for South African learners, especially number patterns and sequences,
since it mostly focuses on narrative generation for arithmetic and linear equation
problems.

Research on the topic from the educational psychology field largely relies on
templates for maths problem generation (e.g., [1–3]). The focus of such work is
creating computer-adaptive tests (i.e., test items that are tailored to the learners’
proficiency) and developing reliable scores for discriminating between learners
of various proficiency. The major focus on such work is the latter and it uses
test item theory since its models provide coefficients of test item difficulty. The
only work in this area that is directly linked to the task at hand is the Adaptive
Content for Evidence-based Diagnosis (ACED) prototype [6,7] that was built
to support learners learning sequences and patterns at the grade 8 level in the
United States (US). The system’s architecture is appealing as it includes a model
of the student’s proficiency and the knowledge required to solve tasks, a method
of updating learners’ proficiency from their performance on tasks, and a model of
the various tasks. However, the major limitation of the work for our task is that
it is geared towards the US curriculum and its methods for problem generation
are not publicly available.

Overall this means that while existing work has attractive properties from
an architectural perspective, they are not sufficient to generate mathematics
problems that abide by the South African mathematics curriculum.

3 COMPAH: Computer Assistant for High School
Mathematics

In creating the problem archetypes, we analyse existing problems so as to create
open and precise formalisation of mathematics problems.

We downloaded sequence and series problems from the South African Depart-
ment of Basic Education’s website4 for the years 2008–2009 and 2011–2020. The
year 2010 is not included because the website did not have the exam paper that
was written in that year. We used the exam papers written in the November
cycle to form the data to be used to formalise the problem types, build the
archetypes, and create a controlled natural language. Henceforth, we shall refer
to this corpus as the development set. We also used the papers written in the
Feb/March cycle to create the test set. Specifically, these are the matric rewrite
exam papers from 2011–2018 (inclusive).

We then analysed the problems presented in the training set in order to
develop formal models of what the problem looks like. Prior to development, we
first introduce some preliminaries to explain what we mean by “model”.

4 https://www.education.gov.za/.
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Towards an Automated Assistant for Generating Mathematics Problems 5

3.1 Preliminaries

Developing models that are specific to sequence and series problems requires
a general definition of what mathematical problems and solutions are. This is
important because we want to distinguish between a maths problem and its
description as we are not interested in only characterising problems at the
linguistic-level. We take the position that a maths problem is a consistent
axiomatic system (the problem setting) and a proposition (the answer). A stu-
dent’s solution can be defined as a proof, possibly inconsistent, of the problem’s
proposition. In order to demonstrate these components, consider the problem
that was taken from [10]: “Joan found 70 seashells on the beach. She gave Sam
some of her seashells. She has 27 seashells. How many seashells did she give to
Sam?”. This problem can be formalised using the axioms labelled A1-A5, the
Peano axioms5, and answer P1. The student is expected to provide a proof of
proposition P1.

A1 ∀x, y possesses(x, y) → Person(x) ∧ Seashell(y)
A2 ∀x, y, z gave(x, y, z) → Person(x) ∧ Person(y) ∧ Seashell(z)
A3 ∀x, y(∃ap possesses(x, p) ∧ ∃bq gave(x, y, q) ∧ ∃cr possesses(y, r)) →

∃a−bs possesses(x, s) ∧ ∃c+bt possesses(y, t)
A4 ∃as1 possesses(p1, s1) ∧ ∃bs1 possesses(p1, s1) → a = b
A5 ∃ay possesses(sam, y)∧∃70y possesses(joan, y)∧∃xz gave(joan, sam, z) →

∃27y possesses(joan, y) ∧ ∃a+xy possesses(sam, y)
P1 x = 43

Due to space limitations, we do not include a proof of the above problem.
Using the above intuitive view as a basic, we present Definitions 1 and 2 in order
to be precise on what problems and solutions are.

Definition 1 (Maths problem). Let MP denote the set of maths problem
and A denote the set of answers to a maths problem. We define a maths problem
as the quadtruple 〈AS,α, p, q〉 ∈ MP where the following conditions are met:

– AS ⊆ SFOL is a finite and consistent set of First Order Logic sentences
– AS = DA∪PA where DA are domain/theory axioms and PA are axioms of

the problem
– α1, ..., αn ∈ A ⊆ SFOL are tautologies. They are the solutions to the problem
– p is a natural language description of the premise of the problem
– q is a natural language description of the question of the problem

Definition 2 (Maths solution). Let SO denote the set of solutions for a
maths problem. We define a solution for some maths problem p ∈ MP as the
finite ordered list 〈s1, s2, ..., sm〉 ∈ SO where sm = αp and ∀1 ≤ j ≤ m sj one of
the following conditions hold:

5 Omitted here for brevity.
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6 Z. Mahlaza

– αp is a solution to the problem
– sj ∈ ASp where ASp is the problem’s set of FOL sentences
– sj is a tautology
– ∃ 1 ≤ g, h < j such that sg ∧ sh → sj can either be true or false

Given the above definitions, we define a problem archetype as a template of
a maths problem. Archetypes are formed by taking a problem 〈AS,α, p, q〉 and
its solutions A and modifying the sentences in AS and A such that there are
statements have place-holders that can take different values. That allows one to
create different instances of the same problem type. With these definitions in
hand, we now turn to how we categorise sequences and series’ in order to have
a manageable organisation of the formalised problem types.

3.2 Categorisation of Problems

The development set initially had a total of 111 sequences and series problems
but we filtered out 23 problems. The 23 problems were filtered out because
they were either multimodal (i.e., text and images), the premise used a very
specialised narrative that would necessitate the creation of a lexico-syntactic
CNL6, the sequence or series type could not be determined, or the question is
judged to be unlikely to be repeated in the future.

Analysis of the remaining 88 sequences and series problems in the training
set showed that there are four types of sequences, and series based on them, that
are examined in the papers and we present the first three in Definition 3.

Definition 3. Let G and A denote geometric and arithmetic geometric
sequences, respectively. We define each of the possible sequence types as ordered
sets in the following manner:

– G = {x | x = ({x1} ∪
∞⋃

i=2

{xi = f(i)}, Oi)} where f(i) = x1r
i−1

– A = {x | x = ({x1} ∪
∞⋃

i=2

{xi = f(i)}, Oi)} where f(i) = x1 + (i − 1)d and

d ∈ N is a constant
– Q = {x | x = (

∞⋃

i=1

{f(i)}, Oi)} where f(x) = ax2
1 + bx1 + c

The above sequence types have also been used in exams papers to form a
sequence type that possesses an interleaving constant. For instance, the quadratic
sequence (2, 3, 10, 23, ...) and the constant 0 can be used to form the new
sequence type (0, 2, 0, 3, 0, 10, 0, 23, ...). We call this an interleaving sequence
and define it in the following manner:

Definition 4. Let I denote the interleaving sequence type. We define interleav-
ing sequences in the following manner:
6 A design decision was taken to not have lexico-syntactic patterns in the current

version to reduce complexity.
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Towards an Automated Assistant for Generating Mathematics Problems 7

– S = A ∪G ∪Q
– CI = {y | y = {(1 − αi)k + αixi}, Oi)} where i ∈ [1,∞), αi = i mod 2,
k ∈ N , and xi ∈ X ⊆ S

– SI = {y | y = {(1 − αi)xi + αiyi}, Oi)} where i ∈ [1,∞), αi = i mod 2, yi ∈
Y ⊆ S, xi ∈ X ⊆ S

– I = CI ∪ SI
Using the sequence and series types we then analysed and formalised prob-

lems along these categories. We then formalised the remaining 88 problems by
identifying the axioms that make up the problem setting and their answers,
following from Definition 1.

3.3 Problem Types

After examining the axioms and solutions of the 88 formalised problems in the
development set that use the various sequences and series types, we found a total
of 64 archetypes or problem types. We present them here using a mixture of nat-
ural language and mathematical notation for ease of reading. We decided against
only listing the formal problem (i.e., as quadruples of the form 〈AS,α, p, q〉 fol-
lowing from Definition 1) for the benefit of human readers.

Archetypes for arithmetic sequences and series

1. Given s1 = f(x), s2 = g(x), s3 = h(x) for some s ∈ A. Show that sn =
f(x) + (n− 1)(h(x) − g(x))

2. Given s1 = f(x), s2 = g(x), s3 = h(x) for some s ∈ A. Show that si = α for
i > 3

3. Given s1 = f(x), s2 = g(x), s3 = h(x) for some s ∈ A. Show that
n∑

i=1

si = α

for n > 4
4. Given s1 = α, s2 = β for some s ∈ A. Show that si = η for some i > 2

5. Given s1 = α, s2 = β for some s ∈ A. If
n∑

i=1

si = π, show that n = ζ.

6. Given s1 = α, s2 = β, s3 = γ, ..., si = η for some s ∈ A. Show that sn =
α+ (n− 1)(si+1 − si) for some i.

7. Given s1 = α, s2 = β, s3 = γ, ..., si = η for some s ∈ A. If si ≡ x mod a for
i ∈ [start, end], show that x ∈ {x1, ..., xn}

8. Given s1 = α, s2 = β, s3 = γ, ..., si = η for some s ∈ A. If si ≡ x mod a,

show that
n∑

i=1

si = π.

9. Given s1 + s2 + s3 + ...+ sk for some sn ∈ A. Express the series using sigma
notation.

10. Given s1 + s2 + s3 + ... + sk for some sn ∈ A. Show that l = |{si | si ≡ ω
mod λ}|

11. Given s1 = α, s2 = β, s3 = γ, ..., si−1 = δ, si = ε, ..., sj = ζ for some sn ∈ A.
Show that k = |{si | si ≡ π mod λ}|

12. Given s1 = α, s2 = β, s3 = γ, ..., si−1 = δ, si = ε for some sn ∈ A. Show that
i = η.
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8 Z. Mahlaza

13. Given s1 = α, s2 = β, s3 = γ, ..., si−1 = δ, si = ε for some sn ∈ A. Show that
i∑

k=1

sk = η for sk < 0

14. Given s1 = α, s2 = β, s3 = γ for some sn ∈ A. If
n∑

i=1

si = π, show that n = ζ

15. Given s1 = α, s4 = β for some sn ∈ A. Show that s2 = ζ and s3 = η.
16. Given sn = f(n) for some sn ∈ A. Show that si = α, si+1 = β, and si+2 = γ.

17. Given sn = f(n) for some sn ∈ A. Show that
n∑

i=1

f(i) = α

18. Given s1 = α, s2 = f(x), and s3 = β for some sn ∈ A. Show that x = γ.
19. Given s1 = α and d = si+1 − si,∀i ∈ Z+. Show that sn = n

2 (2α+ (n− 1)d)
20. Given si = f(x), si+1 = g(x), and si+2 = h(x) for some sn ∈ A. Show that

x = α.
21. Given s1 + s2 + s3 + ...+ sk = π for some sn ∈ A. Show that si = μ where

3 < i < k.

22. Given s1 + s2 + s3 + ...+ sk for some sn ∈ A. Show that
k∑

i=1

= μ

Archetypes for geometric sequences and series

1. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. If sn = αrn−1, show that
r = ζ

2. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Does
∞∑

i=1

si converge?

3. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Specify reasons why
∞∑

i=1

si

converges?

4. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Show that
∞∑

i=1

si = ζ

5. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Show that
n∑

i=1

si = ζ

6. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Show that
∞∑

i=1

si −
n∑

i=1

si =

abn for some a, b.
7. Given s1 = α, s2 = ks1, ..., sj = ksi−1, ... for some sn ∈ G. Show that the

proposition s1 =
j∑

i=2

si is true/false.

8. s1 = α, s3 = f(x), s3 = β for some sn ∈ G. Show that x = η.
9. Given s1 = α, s2 = β, s3 = γ for some sn ∈ G. Show that si = η for some
i > 3

10. Given
n∑

i=1

f(x, i) for some f(x, i) ∈ G. Show that
n∑

i=1

f(x, i) = ζ if x = α.

11. Given
n∑

i=1

f(x, i) for some f(x, i) ∈ G. If
∞∑

i=1

f(x, i) converges, show that

x ∈ {x1, ..., xn} .

12. Given s1 = α, r = β,
∞∑

i=3

si = γ for some si ∈ G. If si + si+1 = δ, show that

si + si+1 = f(a, r)
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Towards an Automated Assistant for Generating Mathematics Problems 9

13. If
k∑

i=1

α1β
f(k)
1 = p, Show that

k∑

i=1

α2β
g(k)
2 = f(p)

14. Given sn = f(n) for some sn ∈ G. Show that si = α.
15. Given s1 = α, s2 = β, s3 = γ, and s4 = δ for some sn ∈ G. Show that si = π

for i > 4.
16. Given r = si+1

si
and

∞∑

i=1

s1r
i−1 = α. Show that si = α.

17. Given sn = f(n) for some sn ∈ G. If
n∑

i=1

si = α, show that n = β.

Archetypes for quadratic sequences and series

1. Given sn = f(n). Show that si = α, si+1 = β, si+2 = γ
2. Given sn = f(n). If sj = min(f(n)), show that j = α .
3. Given sn = f(n). If di = si − s1+1 and di+1 = si+2 − si+3, show that
d1 − d2 = α.

4. Given sn = f(n). If si < α, show that i ∈ i1, ..., in
5. Given s1 = α, s2 = β, s3 = γ. Show that si = η for some i > 3.
6. Given s1 = α, s2 = β, s3 = γ. Show that sn = an2 + bn+ c for some a, b, c
7. Given s1 = α, s2 = β, s3 = γ. If si+1 −si = ψ for some i, show that si+1 = η

and si = ζ.
8. Given s1 + s2 + s4 + ... where sn ∈ Q. Show that sn = an2 + bn+ c for some
a, b, c

9. Given s1+s2+s4+... where sn ∈ Q. Express the series using sigma notation.

10. Given s1+s2+s4+... where sn ∈ Q. Show that the proposition
n∑

i=1

si = f(n)

is true/false.
11. Given s1 = α, s2 = g(x), s3 = β, s4 = f(x) for some sn ∈ Q. Show that

x = ζ.
12. Given s1 = α, s2 = g(x), s3 = β, s4 = f(x) for some sn ∈ Q. If di = si+1 −si

and
n∑

j=1

dj > μ, show that n ∈ {n1, ..., nm}
13. Given s1 = α, s2 = β, s3 = γ, s4 = δ for sn ∈ Q. If d1

i = si+1 − s1 and
d2

i = d1
i+1 − d1

i , show that d2
1 = ζ

14. Given s1 = α, s2 = β, s3 = γ, s4 = δ for sn ∈ Q. If si = η, show that i = ζ.

15. Given s1 = α, s2 = β, s3 = γ, s4 = δ. If di = si+1 − si, show that
n∑

i=1

di =

f(n) is true/false.

16. Given s1 = α, s2 = β, s3 = γ, s4 = δ. If
n∑

i=1

di = η, show that n ∈ {n1, ..., nm}

17. Given
∞∑

i=p

αβf(i) = k. Show that p = η.

18. Given s1 = α, s2 = β, s3 = γ, s4 = δ, and s5 = ε for some sn ∈ Q. If
di = si+1 − si, show that dn = f(n).

19. Given si = α, si+1 = β, and si+3 = γ. If d1
i = si+1 − si and d2

i = d1
i+1 − d1

i ,
show that d2

i = η,∀i ∈ Z+

20. Given si = α, si+1 = β, and si+2 = γ for some sn ∈ Q. Show that sj = η.
21. Given s1 = α, s2 = f(x), s3 = β, and s4 = h(x). Show that x = μ.

A
ut

ho
r 

Pr
oo

f



10 Z. Mahlaza

Archetypes for interleaved sequences

1. Given s1 = α, s2 = β, ..., s11 = λ for some sn ∈ I. Show that si = eta for
some i > 11.

2. Given s1 = α, s2 = β, ..., s11 = λ for some sn ∈ I. Show that
n∑

i=1

si = η for

some n > 11.
3. s1 = α, s2 = β, s3 = γ, s4 = δ, s5 = ε, and s6 = ζ for some sn ∈ I. Show that
si − sj = η for some i, j ∈ Z+.

4. s1 = α, s2 = β, s3 = γ, s4 = δ, s5 = ε, and s6 = ζ for some sn ∈ I. Show that
si ≡ a(mod b),∀i ∈ Z+.

The mathematical formalisations are useful for being precise on the structure
of mathematics problems. We now turn to the evaluation of the scope on the
test set.

4 Evaluation of Scope

Analysis of the 74 questions found in the test set showed that 48 (65%) fell
within the scope of the problem types extracted from the development set. Six
of the other 26 questions were not directly covered by the extracted problem
types but they were testing knowledge that is covered by the extracted problem
types. For instance, question 3.2.1 from 2011 asked learners to calculate the sum
of the first 20 items of geometric series and it was not captured by the extracted
problem types, however, the same kind of question was asked in the building
set in the context of an arithmetic series. This means that the external problem
types cover 73% of the problems in the test set if we do not limit each problem
type to a specific sequence or series type.

5 Utility of Archetypes

To demonstrate utility, we extracted templates to construct a CNL and
used Python and the symbolic mathematics package SymPy7 to capture the
archetypes for the first fifteen arithmetic sequence and series problem types and
developed a prototype assistant that makes use of the archetypes and templates
to generate text. The prototype currently uses the architecture shown in Fig. 2.
In the rest of section, we discuss these components and how they work together
to generate a natural language problem description.

The problem generation module in Fig. 2 takes an identifier of a problem
type, selects and populates the place-holders found in the archetype axioms
using random values, and produces an instance of an abstract representation of
the problem. For instance, when the module is given the identifier 4, it retrieves
the archetype shown in Listing 1.1. The module then generates random values
for s1, s23, and i the place-holders found in line 2 of Listing 1.1. Those values
7 https://www.sympy.org/en/index.html.
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Fig. 2. Architecture used by prototype assistant

are then used to create concrete values for the premises of the problem (lines
11–13) and the solution (line 16). The resulting mathematics problem is then
fed to the question generation module.

1 class ArithmeticArchetypeFour(Archetype):

2 def __init__(self, s1, s2, i):

3 super().__init__()

4 s1_symbol = Symbol(’s1’)

5 s2_symbol = Symbol(’s2’)

6 i_symbol = Symbol(’i’)

7

8 prem1 = Eq(s1_symbol, s1)

9 prem2 = Eq(s2_symbol, s2)

10 prem3 = Eq(i_symbol, i)

11 self.premises.append(prem1)

12 self.premises.append(prem2)

13 self.premises.append(prem3)

14

15 self.seq = ArithmeticSequence(s1, s2 - s1, ’s’)

16 self.solution = self.seq.get_function()(i)

Listing 3.1. Archetype that can be used to generate arithmetic sequence problems of
type 4

The problem description module takes in the maths problem, fetches the
associates templates from the CNL, and then inserts the slot values in the
templates using the information found in the Python archetype. For instance,
for the problem created using the archetype in in Listing 1.1, the module
can select the templates Consider the sequence: [sequence] and If the
pattern continues in the same manner, determine [seqItemLabel] for
the premise and question respectively. In the premise template, the slot
[sequence] is a place-holder for s1 and s2. In the question template, the slot
[seqItemLabel] is a place-holder for the label for the ith element. The module
can then used those premise and question templates to generate problems of the
form:
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1 Consider the sequence: 5, 17
2 If the pattern continues in the same manner, determine s62.

The python archetypes, controlled natural language, and prototype imple-
mentation are released as supplementary material at https://zenodo.org/record/
6927550.

6 Conclusion

This paper presented the first formalisation of mathematical problems that high
school leaving learners are expected to master. This formalisation is based on the
analysis of problems from a corpus of problems covering approximately 12 years
of South African grade 12 exams. We evaluated the coverage of our formalisations
on problems taken from the Matric rewrite exam papers from 2011–2018 (inclu-
sive). We have found that the formalised problems cover 65% of the problems
in the test set. Moreover, when we do not limit each problem formalisation to a
specific sequence and series type, where appropriate, then we see that our for-
malised problem types cover 73% of the problems. We have also built a prototype
assistant that relies on archetypes based on the formalised problem types and a
controlled natural language to demonstrate the utility of the formalisations. The
created artefacts can be used by lecturers to enable student-led revision of high
school mathematics thus improving students’ mathematics background. Other
researchers may find the artefacts useful in investigating the diversity of maths
problems over the years, how differences in the curriculum impact the actual
problem posed to students, etc.

As current and future work, we focus on extending the archetypes and the
controlled natural language to cover other problem types, introducing models of
student proficiency, and investigating the impact of the assistant on educational
outcomes.
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