
Foundations for reusable and
maintainable surface realisers for

isiXhosa and isiZulu

Zola Mahlaza

A thesis presented for the degree of

Doctor of Philosophy

in the Department of Computer Science

University of Cape Town

August 2022

2

For Nokulunga Mahlaza and Cebisa Xhamane.

Acknowledgements

Baninzi gqithi abantu endifuna ukubabulela ngokundicendisa kwizifundo zam. Andi-
nokwazi ukubabhala bonke apha nokuba bendifuna.

Ndiyabulela kwi Hasso Plattner Institute (HPI) ngemali yokufunda kunye nokundisa
emazweni.

Ndibulela kakhulu kuSomila Fuma nakuSophakama Mahlaza ngondixhasa kunye
nokundiboleka indlebe.

Bendingasoze ndifike apha ukuba zange ndifumane inxaso ngoku ndandisekwisikolo
samabanga aphezulu. Ndifuna ukuthi ndibamba ngazo zozibini kuSiphosethu Mnene,
Sive Bukula, Lutho Bongco, Ukho Dondashe, Avukonke Jona, Odwa Ntsephe, Zolani
Nombembe, Vuyisa Maswana, Amangwe Vatsha, Lindokuhle Vatsha, Sibusiso Mqhayi,
Nangamso Matshanda, Aphiwe Ntsini, Siphosethu Martins, Sithembele Dick, Aphiwe
Veveza, Zintle Mazaleni, kunye nabanye abaninzi gqithi. Enkosi kubo bonke oo-
Tishala base Hector Petersen, kwaZwelitsha.

Ndiyabulela kumntu wonke ebeyingxenye yamaqela eDigital Libraries, KnowledgE
ENgineering, kunye neHuman Computer Interaction kwiDjunivesithi yaseKapa. Enkosi
kuLighton Phiri, Joan Byamugisha, Richard Maliwatu, Toky Hajatiana Raboanary,
Hafeni Mthoko, Jecton Tocho Anyango, Joseph Telemala, Tezira Wanyana, Wanjiru
Mburu, Sarah Dsane, Frances Gillis-Webber, William Leighton Dawson, Mary-Jane
Antia, Jackson Moji, Mustafa Ali, ukuya kwabanye abaninzi gqithi.

Last but not least, I am tremendously grateful to my supervisor, Assoc. Prof. C.
Maria Keet. I was able to grow intellectually because of her tough questions, her
frankness, and the wonderful environment she created for the KnowledgE ENgineer-
ing team. Her guidance, direct and indirect, since 2014, allowed me to break down a
wall I have kept between scientific endeavours and “real life” for most of my life. A
wall I’ve kept because of incorrect, and dare I say idiotic, conceptions on who gets
to be a scientist and what kind of problems scientists (or “true scientists”) ought
to work on. Without that, I would have never been able to appreciate the impact I
could make in this world. Heel hartelijk bedankt, Maria.

Abstract

Natural Language Generation (NLG) systems are used to generate text in order to re-
duce manual effort. Most existing systems are built to support European languages
with simple and/or well-documented grammars. IsiZulu and isiXhosa, two of the
largest South African languages by first language speakers, have not received a lot of
attention in the field despite the potential impact of NLG systems for their speakers.
The existing NLG systems created for these languages rely on ad hoc methods for
surface realisation. Surface realisation is the process of generating text from a sys-
tem’s abstract representations of sentences. The aforementioned methods combine
templates and grammar rules since the languages are low-resourced and grammat-
ically rich. However, do not use their scant linguistic resources efficiently, they do
not rely on a template specification that supports interoperability, and do not use
an architecture that yields easy-to-maintain software since none exists.

The objectives of this thesis are to create the foundations for easy to maintain and
reusable surface realisation tools for isiXhosa and isiZulu by establishing a principled
way to pair templates and grammar rules, organise surface realisation modules such
that the components are modular, analysable, and reusable, and create template
specifications that are interoperable. In addition, it is to demonstrate that afore-
mentioned objectives can be achieved while generating good quality isiXhosa and
isiZulu text in the data-to-text and knowledge-to-text areas.

We achieve these objectives by developing a model-based approach of pairing tem-
plates and Computational Grammar Rules (CGRs) to obtain linguistically well-
founded templates that are suitable for low-resourced and grammatically rich lan-
guages. To obtain interoperable template specifications, we created a task ontology
using a bottom-up approach and evaluated it via the standard practice of using Com-
petency Questions (CQs) and removing inconsistencies via an automated reasoner.
We also created an architecture that satisfies the most maintainability features from
the BS ISO/IEC 25010:2011 standard. In addition, we created proof-of-concept text
generation tools that use the proposed approaches and artifacts to generate isiZulu
and isiXhosa text and surveyed speakers of the two languages to establish the qual-
ity of the text. We have found that most (57%) of the generated isiXhosa texts are
judged positively and there is no consensus on the remaining texts, possibly due to
differences in dialect. In addition, most (83%) of the generated isiZulu texts are also
judged positively as they have at most one participant who considers them to be
ungrammatical and unacceptable.

Declaration of Authorship

I, Zola Mahlaza, hereby declare that the work on which this thesis is based
is my original work (except where acknowledgements indicate otherwise)
and that neither the whole work nor any part of it has been, is being, or
is to be submitted for another degree in this or any other university. I
authorise the University to reproduce for the purpose of research either
the whole or any portion of the contents in any manner whatsoever.

Signature:

Date: October 17, 2022

Publications

Versions of the research presented in this thesis have previously appeared
in the following publications:

• Z. Mahlaza and C. Maria Keet. A classification of grammar-infused
templates for ontology and model verbalisation. In: Emmanouel
Garoufallou, Francesca Fallucchi, and Ernesto William De Luca, ed-
itors, Metadata and Semantic Research - 13th International Con-
ference, MTSR 2019, Rome, Italy, October 28-31, 2019, Revised
Selected Papers, volume 1057 of Communications in Computer and
Information Science, pages 64–76. Springer, 2019

• Z. Mahlaza and C. M. Keet. “Formalisation and classification of
grammar and template-mediated techniques to model and ontology
verbalisation”. In: International Journal of Metadata, Semantics
and Ontologies 14.3 (2020), pp. 249-262

• Z. Mahlaza and C. M. Keet. “OWLSIZ: An isiZulu CNL for struc-
tured knowledge validation”. In: Proceedings of 3rd International
Workshop on Natural Language Generation and the Semantic Web,
WebNLG+ 2020, Dublin, Ireland (Virtual), December 18, 2020.

• Z. Mahlaza and C. M. Keet. “ToCT: A task ontology to manage
complex templates”. In: Emilio M. Sanfilippo et al., editors, Pro-
ceedings of the Joint Ontology Workshops: FOIS Ontology showcase
track, co-located with the Bolzano Summer of Knowledge, BOSK
2021, Virtual & Bozen-Bolzano, Italy, September 11-18, 2021, vol-
ume 2969 of CEUR Workshop Proceedings. CEUR-WS.org, 2021

• Z. Mahlaza and C. M. Keet. “Surface Realisation Architecture for
Low-Resourced African Languages”. In: ACM Trans. Asian Low-
Resour. Lang. Inf. Process. (Oct. 2022). https://doi.org/10.
1145/3567594. (in print)

https://doi.org/10.1145/3567594
https://doi.org/10.1145/3567594

Auxiliary publications

Research associated with this thesis, but not explicitly included here, has
appeared in the following publications:

• Zola Mahlaza, C. Maria Keet, Jarryd Dunn, Matthew Poulter
(2021). An evaluation of template and ML-based generation of user-
readable text from a knowledge graph. CoRR, abs/2106.14613.

• C. Maria Keet, Z. Mahlaza, and M.-J. Antia. CLaRO: A controlled
language for authoring competency questions. In Emmanouel Garo-
ufallou, Francesca Fallucchi, and Ernesto William De Luca, editors,
Metadata and Semantic Research - 13th International Conference,
MTSR 2019, Rome, Italy, October 28-31, 2019, Revised Selected Pa-
pers, volume 1057 of Communications in Computer and Information
Science, pages 3–15. Springer, 2019

Contents

1 Introduction 1
1.1 Computer systems for text generation 1
1.2 Nguni languages . 3
1.3 Generating Niger-Congo B (NCB) languages 5
1.4 Limits of existing surface realisers . 8
1.5 Problem statement . 10
1.6 Research questions and tasks . 11
1.7 Contextualisation of tasks . 12
1.8 Research approach . 14
1.9 Thesis outline . 15

2 Background 18
2.1 IsiXhosa and isiZulu . 18

2.1.1 Noun classification systems 20
2.1.2 Concordial agreement . 22
2.1.3 Phonological conditioning . 23

2.2 Natural language generation . 25
2.2.1 Data-to-text generation . 26

2.2.1.1 Existing work on African languages 28
2.2.2 Knowledge-to-text generation 28

2.2.2.1 Existing work on African languages 30
2.3 Existing analysis of NLG system architectures 31
2.4 Text realisation . 33

2.4.1 Classification of techniques 35
2.4.1.1 Templates (T) . 36
2.4.1.2 Computational grammar rules (G) 37
2.4.1.3 Data-driven models (DD) 43

i

2.4.1.4 Templates and computational grammar rules (GT) . 49
2.4.1.5 Data-driven models and grammar rules (DDG) . . . 56
2.4.1.6 Data-driven models and templates (DDT) 58

2.4.2 Summary . 60

3 Grammar-infused templates: combining template and grammar rules 63
3.1 Gaps in existing augmented templates 64
3.2 Pairing relationships . 66

3.2.1 Relationships . 66
3.3 Demonstration of relationships . 71
3.4 Categories of grammar-infused templates 74
3.5 Classification of grammar-infused templates 78
3.6 Demonstration of how to classify systems 83
3.7 Utility . 86
3.8 Discussion . 89
3.9 Summary . 91

4 A task ontology for templates to support morphologically-rich lan-
guages 92
4.1 Model development . 95

4.1.1 Competency questions . 96
4.1.2 Ontology creation . 97
4.1.3 The ontology’s content . 98
4.1.4 Formalisation . 102

4.2 Ontologies and models for concord annotation 104
4.3 Use and benefits of artefacts . 105

4.3.1 IsiZulu . 106
4.3.2 Catalan . 110
4.3.3 Other languages and benefits 113

4.4 Discussion . 114

5 Knowledge-driven architecture for a maintainable surface realiser 116
5.1 Collecting surface realisers for analysis 118
5.2 Analysis criteria . 119
5.3 Surface realiser architectures and categories 120
5.4 Limitations for Nguni languages . 132
5.5 Knowledge guided architecture . 136

ii

5.6 Architecture maintainability . 138
5.7 Value of template ontology . 140

5.7.1 Inconsistencies . 141
5.7.2 Template comparison and reuse 142

5.8 Summary . 144

6 Evaluation 145
6.1 Evaluation strategy . 146
6.2 Surface realiser implementation . 147

6.2.1 Grammar engines . 147
6.2.2 Error detection . 148
6.2.3 Linearisation . 149

6.2.3.1 Validation . 151
6.3 IsiXhosa GALiWeather . 152

6.3.1 Methods and Materials . 152
6.3.2 Results . 158
6.3.3 Summary . 162

6.4 OWL Simplified isiZulu . 162
6.4.1 Verbaliser implementation . 165
6.4.2 Evaluation procedure . 166
6.4.3 Results of external evaluation 171
6.4.4 Summary . 172

6.5 Discussion . 172

7 Conclusion 176
7.1 Revisiting research questions . 177
7.2 Contributions . 179
7.3 Further research . 181

7.3.1 Template creation and management tools 181
7.3.2 Automated tools for approach selection 182
7.3.3 Coverage for other Nguni languages 182
7.3.4 NLG systems with mixed methods, resource reuse, and evaluation182

A ToCT Competency questions and queries 184

B Survey materials 187

Bibliography 200

iii

List of Figures

1.1 High-level depiction of the process of generating natural language text
from some input. 2

1.2 Informal rendering of the relevant components involved in the surface
realisation task and the numbering of elements that pertain to the
identified tasks . 13

2.1 Number of IsiZulu/IsiXhosa speakers for each district municipality in
South Africa . 19

2.2 Three step pipeline NLG system architecture (Adapted from Dale and
Reiter [68]) . 26

2.3 Data-to-text system architecture used in BabyTalk (Adapted from Re-
iter [242]) . 27

2.4 Knowledge-to-text system architecture used in NaturalOWL (Source:
Androutsopoulos, Lampouras, and Galanis [8]) 29

2.5 Demonstration of the NIGEL grammar within an architecture of the
PENMAN project. The framework refers to PENMAN’s components
that lie outside of NIGEL. (Based on [177, 178]) 35

2.6 Existing surface realisation approaches 36
2.7 An example of template used to generate soccer text. Slots shown us-

ing square braces and bold highlighting. (Source: van der Lee, Krah-
mer, and Wubben [274]) . 37

2.8 Architecture of the PENMAN reusable tactical generator. Abbrevi-
ation(s): SPL = Sentence planning language. (Based on [179, 114,
127]) . 38

2.9 Schema used for SimpleNLG’s default lexicon. A word has 23 proper-
ties that are associated with it. The meaning of the various properties
can be found at https://github.com/simplenlg 41

2.10 Representation of a sequence to sequence architecture 44

iv

2.11 Representation of a sequence to sequence model that is recurrence-
based when it is converting a sequence of plan tokens (P1, ..., Pn) into
natural languages words (T1, ..., Tn). 45

2.12 Representation of the original Transformer architecture (Source: Vaswani
et al. [276]). 46

2.13 Tree representation of a YAG template (Source: [191]) 53
2.14 Representation of the process followed by Kondadadi et al. [143] to

create their text generation assets (Adapted from [143]) 59

3.1 Grammar-infused templates where templates are paired with CGR sets
through two kinds of relationships; attachment and embedding 67

3.2 Seven different types of grammar-infused templates. CP, CE, EP, and
CEP are combinations of the primary three relations of how CGRs can
be related to templates. 75

3.3 Architecture of the isiZulu ontology verbaliser that makes use of pat-
terns (Source: [138]) . 84

4.1 High-level representation of the process followed for each iteration in
the creation of the task ontology. Abbreviations: Competency Ques-
tion = CQ and SPARQL = SPARQL Protocol and RDF Query Lan-
guage. 95

4.2 Representation of the concept, relations, and constraints found in the
task ontology for template specifications using Unified Modelling Lan-
guage (UML) notation. 99

4.3 Conceptual representation of a Description Logic knowledge base (Source:
[130, pg45]). 103

4.4 List of fixed segments in the model used to answer the competency
questions. This is the result of running the SPARQL query created
from first competency question. 104

4.5 Informal list of the concords types found in the Concord Annotation
Ontology . 105

4.6 Representation of the various ontologies and models that are created
and reused. Directed arrows labelled ‘imports’ denote that the source
ontology or model is imported by destination artefact. We use blue
boxes that have rounded corners for artefacts that we have created.
We use grey boxes with sharp corners for artefacts that have been
created by others. 106

v

4.7 Representation of the classes used in the isiZulu and some of the rela-
tionships between them . 108

5.1 Representation of surface realiser architecture category 1. We use the
grey box with sharp corners to denote the surface realiser and a yellow
box with sharp corners to denote that the structures are captured using
a grammar. 122

5.2 Surface realiser architecture category AC2 125
5.3 The two architectures that belong to architecture category 2 126
5.4 Surface realiser architecture category AC3 127
5.5 The three architectures that belong to architecture category 3 128
5.6 Representation of surface realiser architecture category AC4 129
5.7 Representation of surface realiser architecture category A5 130
5.8 Surface realiser architecture category AC6 131
5.9 Functional view of the knowledge-guided architecture to generate text

from grammar-infused templates. 137
5.10 Representation of the concepts used in the Grammatical Framework

(GF) and Extensible Markup Language (XML) templates and how
they relate to each other . 143

6.1 The process used by RosaeNLG to generate text when given a template
file name and some associated parameters. Abbreviation(s): Language
= lang. 150

6.2 Template schema used in the GALiWeather system (Source: [234]) . 152
6.3 Fluency judgements for each of the 23 weather forecast texts 159
6.4 Grammaticality judgements for each of the 23 weather forecast texts 159
6.5 Software architecture used by the OWLSIZ verbaliser 165

B.1 English instructions that were available to participants in the IsiXhosa
GaliWeather survey . 196

B.2 IsiXhosa instructions that were available to participants in the IsiX-
hosa GaliWeather survey . 197

B.3 English instructions that were available to participants in the OWLSIZ
survey . 198

B.4 Ethics approval document for the evaluation of the quality of isiXhosa
weather forecast and isiZulu ontology verbalisation text 199

vi

List of Tables

2.1 List of noun classes and their prefixes in Proto-Bantu (Source: [26,
p282-284]) . 20

2.2 List of noun classes and their prefixes in isiZulu and isiXhosa (Sources:
[282, 294] and [214]) . 21

2.3 Illustrative semantic content of each noun class [128] 22
2.4 List of Niger-Congo B language agreement affixes and the Part-of-

Speech (POS) categories they are found in (Source: [192]) 23
2.5 Combinations of vowels in isiXhosa and isiZulu. Abbreviation(s):

IsiZulu = Zu and isiXhosa = Xh. (Sources: [252, 275, 222, 228]) . . . 24
2.6 Classification of NLG architectures (Based on [255, 93]) 31
2.7 List of lexical, phrasal, and structural component types found Sim-

pleNLG, GF’s Resource Grammar Library (RGL), and jsRealB . . . 42
2.8 An example of meaning presentation captured using production rules

in PHARAOH++ (Source: [289]) . 43
2.9 The sizes of some popular corpora used by data-driven NLG systems

for various languages and input types. 50
2.10 List of components found in the extended templates. Abbreviations:

Concatenation = concat. 52
2.11 A collection of Meaning Representations (MRs) that are aligned with

text (Source: [10]) . 59

3.1 Categorisation of the 54 ontology verbalisers and associated tools based
on the type of surface realisation. 81

3.2 Classification and various features of grammar-infused templates for
eleven verbalisers, three NLG systems, and two realisers that have
support for grammar-infused templates 82

vii

5.1 List of all classified systems whose surface realiser where classifiers and
their corresponding architecture identifiers 121

5.2 Surface realiser architectures, their associated categories, and the dif-
ferences between them. 123

5.3 Comparison of the new architecture to other architectures 139

6.1 Templates to be used for testing the linearisation algorithm for isiX-
hosa and isiZulu . 151

6.2 List of the slots and the number of polymorphic words in each template
and the types of slot fillers used . 154

6.2 List of the slots and the number of polymorphic words in each template
and the types of slot fillers used . 155

6.2 List of the slots and the number of polymorphic words in each template
and the types of slot fillers used . 156

6.3 List of English question templates and OWL Simplified IsiZulu templates163
6.3 List of English question templates and OWL Simplified IsiZulu templates164
6.4 List of OWL input statements that are not verbalisable by the system

and the reasons of the inability . 168
6.5 Number of participants’ judgements 171
6.6 Number of text for which participants agree regarding grammaticality,

understandability, and acceptability 172

B.1 Names and assigned identifiers (ID) of the resulting isiXhosa Gali-
Weather templates. The template names are all suffixed with “Tem-
plate”, however, that is omitted from the table for brevity. 187

viii

Chapter 1

Introduction

Several institutions employ humans to analyse data and extract insights using their
domain knowledge, and then ask them to compile textual reports detailing their in-
terpretations for different audiences. For instance, numerical weather prediction data
is interpreted by weather forecasters in institutions like the South African Weather
Service (SAWS)1 and then the forecasters prepare and disseminate text reports to
the general public to keep them informed. Similarly, financial institutions produce
reports and slide decks to present their analysis of financial data to their clients. A
big bottleneck in such processes, especially for financially constrained organisations,
is that manual document preparation is not scalable. For instance, SAWS cannot
provide regular weather reports for all South African towns without incurring a large
financial cost since there are a large number of them (there are 3109 mainplaces, a ge-
ographical classification that refers to a city, town, or large area [278] in South Africa).
Similarly, if some South African universities wanted to provide students with very
detailed progress reports throughout the year then they would need to hire specialised
staff and incur the costs since they cannot expect a lecturer to compile such reports,
especially since some courses have a very large number of students [119].

1.1 Computer systems for text generation
Natural Language Generation (NLG) solutions can overcome the scalability challenge.
Specifically, one can build and deploy a data-to-text system for the previously men-
tioned examples. For instance, the United Kingdom’s Meteorological office2 launched

1https://www.weathersa.co.za/
2https://www.metoffice.gov.uk/

1

https://www.weathersa.co.za/
https://www.metoffice.gov.uk/

an NLG system that can generate forecasts for approximately 5000 locations auto-
matically [260]. Another example of such a system is Isard and Knox’s [117] student
report card generator that was deployed for three modules of a Master’s degree at
the University of Edinburgh over three semesters [141]. NLG is a subfield of Natural
Language Processing (NLP) and is concerned with researching and modelling vari-
ous language phenomena and building software systems that can generate text from
data, information, or knowledge. The creation, and deployment, of NLG systems is
not limited to research-focused institutions as there is a growing number of commer-
cial companies that sell NLG technology and related services [66, 67]. Prominent
examples of companies that are operating in this space are Arria3, Ax Semantics4,
and Yseop5. An example of the deployment of an NLG system outside a research and
teaching enviroment is the use of Ax Semantics’ technology6 by News.de7, a German
independent news portal, to create daily reports of current news, statistical reports
pertaining to the Coronavirus disease, etc.

NLG software systems are responsible for determining document structure, word
phrasing, sentence combinations, and the correct surface form of the linguistic units
(e.g., symbols, words, or sentences) with respect to the chosen natural language’s
orthography. Some of these systems tend to generate text following the two-step
process depicted in Figure 1.1.

Planning Realisation
Data

Text

Intermediate

representation

Figure 1.1: High-level depiction of the process of generating natural language text
from some input.

The planning component in the above process is in charge of picking the input portions
that are judged relevant and deciding the organisation of those pieces. Then, the
realisation component converts a system’s intermediate representation to a natural
language. While the planning process might be natural language agnostic, up to a

3https://www.arria.com/
4https://en.ax-semantics.com/
5https://www.yseop.com/
6https://en.ax-semantics.com/case-study/newsde/
7https://www.news.de/

2

https://en.ax-semantics.com/case-study/newsde/
https://www.news.de/

point, the realisation component is always language-specific. Several tools have been
built to support languages such as English [94], Tibetan [146], and French [200]. We
will discuss them in detail in Chapter 2. However, there are no easy to maintain and
reusable tools built for isiZulu and isiXhosa, the most widely spoken Nguni languages.
Before we delve into great detail about the limitations of the few tools created for
isiZulu and isiXhosa, we will introduce these two languages.

1.2 Nguni languages
The Nguni language group belongs to the Niger-Congo B (NCB)8 language family
and is composed of languages spoken primarily in Southern Africa. The exact number
of Nguni languages is dependent on the NCB language classification since some may
be genetic vs. referential. The genetic classification systems use historical discover-
ies from fields like archaeology or genetics to make conclusions regarding language
similarity. The referential classification systems rely on the comparison of language
features and do not draw a conclusion regarding a language’s history [250]. In addi-
tion, some classification systems may use different methods to distinguish between a
language and dialect. In this thesis, we shall use Maho’s [173, 174] system since it
is the most recent classification of NCB languages published in English, a language
understood by the present author. According to the classification, the Nguni group
has the following languages and dialects (we explain it afterwards):

• Xhosa (S41):

– Mpondo (S41A)
– Xesibe (S41)
– Bomwana (S41C)
– Gaika (S41D)
– Gcaleka (S41E)
– Thembu (S41F)
– Mpondomise (S41G)
– Ndlambe (S41H)
– Hlubi (S41I, in the former

Ciskei)

• Zulu (S42):

– KwaZulu-Natal Zulu (S42A)
– Transvaal Zulu (S42B)
– Qwabe (S42C)
– Cele (S42D)

• Swati (S43)

• Ndebele of Zimbabwe (S44)

• Old Mfengu (S401) [This language
is extinct]

• Bhaca (S402)

• Hlubi (S403)
8Elsewhere in the literature, they are called the Bantu language family. We avoid this term due

to the derogatory nature of the word “Bantu” in South African history.

3

• Phuthi (S404)

• Nhlwangwini (S405)

• Lala (S406) [This language is ex-

tinct]

• South Ndebele (S407)

• Sumayela Ndebele (S408)

In the list of languages given above, we have kept Maho’s orthography for the various
language names (e.g., we use Zulu instead of isiZulu). We also kept the language codes
to enable easy identification of each language’s geographical predominance using a
coded map of NCB languages (e.g., [173]). This list uses a language code that ends
with a capital letter to denote dialects. All other items are languages (e.g., Xhosa,
Zulu, Swati, etc.). The list also uses the terms ‘Transvaal’ and ‘Ciskei’ — references
to the province and territory that existed in Apartheid South Africa9. Please note
that some authors may classify Old Mfengu, Bhaca, Hlubi, Phuthi, Nhlwangwini,
Lala, South Ndebele, and Sumayela Ndebele as dialects of either Xhosa, Zulu, Swati,
or Ndebele but Maho classifies them as separate languages since he is of the view
that the “closest affinity within the group is uncertain or impossible to decide” [174,
pg640].

While Maho’s list of languages includes numerous Nguni languages, this thesis focuses
only on isiXhosa and isiZulu.We have chosen the two languages since they have the
highest number of first language speakers in the Nguni group; as such, NLG support
can impact a vast number of people. Specifically, there are around 19 million first-
language speakers of the two languages [261].

The languages have agglutinative morphology, a complex verb structure, noun clas-
sification, and concordial agreement. We use the example from [167] to illustrate the
verb’s complexity and various aforementioned features:

ba-sa-si-neth-isis-a
3pers pl-ASPp-OC-rainvr-INT-FV
‘It is still raining intensely on us as a result of them’

The verb is formed by combining several morphemes. In addition, the ba- is used to
indicate the 3rd person plural and the -sa- is the perfective aspect. The -si- is an
object concord used to indicate that the verb’s object is the 1st person plural. The
object concord is dependent on the noun class of the verb’s object. There are 15 and 17
noun classes for isiXhosa and isiZulu, respectively. However, some noun classification
systems may have fewer classes. The verb root is -neth-, -isis- is a verb extension and

9For more context on the geographical areas, see https://www.sahistory.org.za/article/
black-homeland-citizenship-act-1970

4

https://www.sahistory.org.za/article/black-homeland-citizenship-act-1970
https://www.sahistory.org.za/article/black-homeland-citizenship-act-1970

denotes the intensive, and finally -a is the final vowel. The noun classification system
can be understood as being similar to the ones found in languages like Mandarin
[161] or Amazonian languages [77]. Nonetheless, it manifests itself in different ways
in NCB languages. For instance, in the above examples, the verb has morphemes
whose values depend on their governing noun.

1.3 Generating NCB languages
At the time of writing, there are only a few NLG systems [138, 42] that generate
languages from the NCB family. While the subset of the NLG community that fo-
cuses on languages like English has embraced the use of deep learning [206], this has
not been the case for NCB languages owing to a lack of data. Instead, researchers
who focus on the languages under consideration have created systems that are lim-
ited to specific application domains as there are no surface realisers that can be used
with NLG systems whose input is data, information, or knowledge. The creation
of neural machine translation systems that take in data or knowledge as input to
generate English text that can then be translated into isiZulu or isiXhosa cannot,
at present, lead to systems whose quality is at the level of languages like English
(e.g., a good English-to-IsiZulu system has a BLUE score of 7.54 [183] vs. a score of
30.2 in a good English-to-German system [162]). This is because such an approach
assumes the existence of large parallel English-IsiXhosa and English-IsiZulu corpora.
However, such corpora do not exist, at least not to be able to build high quality
translation systems. This situation is even worse when we consider the availability of
data in such sub-domains such as data-to-text and knowledge-to-text (i.e., it is often
easier to collect parallel corpus for machine translation vs. a data-to-text corpus for
the languages). Technically, one can still create subject-domain independent systems
using some of the realisation methods used by the existing systems (i.e., patterns).
For instance, Keet and Khumalo’s patterns can verbalise part-whole relations in any
ontology, irrespective of its subject domain. Similarly, Byamugisha et al.’s [42] pat-
terns and algorithms can verbalise Web Ontology Language (OWL) constructors for
other domains even though they were designed to support the healthcare domain.
To support the efficient creation of NLG systems, especially including ones that also
take other kinds of input other than ontologies, there is a need for reusable and easy-
to-maintain surface realisers for the languages. Such realisers would reduce the need
to re-engineer text generation tools that are applicable in most, if not all, subject
domains when building an NLG systems.

5

An example of a reusable tool for surface realisation, even though it only supports
English and not languages in the NCB family, is SimpleNLG [94]. The realisation
engine was used in the Hotel Scribe system [165], for generating English hotel de-
scriptions from structured data. It has also used in other systems outside the hotel
domain (e.g., [91]). In addition, there are also variations of SimpleNLG built to sup-
port languages like German [28], Galician [90], and Italian [235]. Since South African
languages are under-resourced [99, 201], there is no equivalent grammar-based (or
even data-driven) realisation solution. It is also not feasible to develop large corpora
or write grammar textbooks from scratch prior to building an NLG system for each
domain. A lot of money [216] and time is required to create such resources; hence,
other techniques for surface realisation are sensible for the languages.

All existing NLG systems that generate NCB languages use patterns [136]. These are
an extension of the notion of ‘simple templates’ that introduce sub-lexical elements,
rules for word agreement, and orthogonal Computational Grammar Rules (CGRs)
for phonological conditioning. The latter refers to the rules that are required for
combining a word’s morphemes and will be discussed in detail in Chapter 2. Our
use of the term CGR is meant to clarify that the grammar rules to which we refer
are represented in a way that would enable a computer to process them. We also
use the term ‘simple templates’ to refer to templates with fixed words and elements
only. We will introduce them in detail in Chapter 3. The following pattern is a
fragment of the patterns created by Keet and Khumalo [136] for verbalising universal
quantification:
⟨ QC (all) for NC1⟩onke ⟨N1⟩

The pattern has a word whose prefix is a slot and whose suffix is the string -onke. The
second item is a slot that expects a noun (N1) from a specific noun class (NC1). The
first word’s slot expects a universal quantitative concord (QC (all)) that is dependent
on the noun class of the word inserted into the second item. For instance, the pattern
can be used to produce the texts bonke abantu ‘all people’ and zonke izinja ‘all dogs’
where the underlined segments are determined by the inserted noun. The slot with
the universal quantitative concord is not possible in traditional templates as the only
permissible slot type is the one used for the noun (i.e. ⟨N1⟩). This is because it exists
within a word and its value is dependent on another word. In the given example, the
noun to be inserted into the slot controls the form of the preceding word and this
process may appear similar to numerical classifiers in Mandarin. It differs in that
NCB nouns can be classified into more categories and they impact the form of many

6

more Part-of-Speechs (POSs). The categorisation of nouns for Nguni languages will
be detailed in Section 2.1.

The use of CGRs within templates is not unique to NCB languages. For instance,
RosaeNLG offers support for so-called augmented templates for English where some
linguistic rules are applied to templates. Consider the augmented template shown in
Listing 1.1 (we explain it afterwards):

Listing 1.1: RosaeNLG template for displaying a list of items.
1 mixin someExampleMxn
2 -
3 const items = [
4 ['sword', 6],
5 ['element', 1],
6 ['corpus', 10],
7 ['dog', 1]
8];
9 | There are multiple objects we use for demonstration , for example

10 eachz stuff in items with {separator: ',', last_separator: ',
11 plus', end: '!'}
12 -
13 const name = stuff[0];
14 const num = stuff[1];
15 if num > 1
16 | #[+value(num, {'TEXTUAL':true })]
17 else
18 | a
19 | #[+value(name, {number: valueToSorP(num)})]
20 p #[+someExampleMxn]

The above augmented template generates the text “There are multiple objects we
use for demonstration, for example six swords, an element, ten corpora, plus a dog!”.
Specifically, it generates an html paragraph using the mixin someExampleMxn (line 20),
whose body is defined in lines 1-19. A mixin can be understood as reusable code that
resembles a function. The underlined segments are generated by the value mixin10

(lines 16 and 19) and it produces texts of the form ‘NUM NOUNpl’ or ‘DT/NUM
NOUNsg’ where NUM and DT denote a verbalised Indo-Arabic numerical and a de-
termine, respectively. The first text form (i.e., NUM NOUNpl) is used when verbal-
ising multiple items (e.g., 10 corpora) and the second form (i.e., DT/NUM NOUNsg)
is used when verbalising a singular item (e.g., 1 dog). The value mixin uses CGRs to
verbalise Indo-Arabic numerals (NUM) and generate the determiner (DT) that mor-
phologically agrees with its corresponding noun. In the English augmented template,
the rules are not ‘augmented’ directly within the template. Instead, the template

10https://rosaenlg.org/rosaenlg/3.1.0/mixins_ref/value.html

7

https://rosaenlg.org/rosaenlg/3.1.0/mixins_ref/value.html

specification makes use of a value mixin whose operations is defined in RosaeNLG’s
ValueManager. Nonetheless, a tool suite like RosaeNLG is not suitable as foundation
for building reusable and easy to maintain systems for NCB languages.

RosaeNLG and related tools will be discussed in detail in Chapter 2 where we will
also point out their limitations.

1.4 Limits of existing surface realisers
To demonstrate the limitations of existing surface realisation techniques that have
already been explored for NCB languages on a broader level, consider the following
example scenario:

A South African banking company whose customer base is isiZulu and
isiXhosa speaking members of burial societies and stokvels has amassed
a large amount of financial data over several years. They have used it
to identify the need to reduce customer visits to physical branches for
certain matters. In addition, they are interested in generating reports for
their customers to use. The reports will be delivered via smart-phone
applications to help their customers reduce costly behaviours. After con-
sulting their engineering department, they have decided that they will
introduce specialised conversational agents and NLG report generators in
Nguni languages.

It is reasonable for the engineers described in the scenario to expect that they could
also rely on the patterns used by Keet and Khumalo [136] and Byamugisha, Keet,
and DeRenzi [44]. In addition, it is also reasonable to expect that there are mod-
ular surface realisation tools usable in their two application areas. Such modular
tools would reduce the duplication of effort. Since their application areas are not
knowledge-to-text then they would need to adapt or extend patterns. There are two
existing approaches for making use of patterns for domains or languages for which
patterns [136] were not designed:

• Extension: This approach involves creating additional constituents in order
to support new domains, when necessary. This approach was seen in Keet
and Khumalo [134]’s extension of the original patterns. They amended the
patterns’ original constituents with the possessive concord and locative affixes to
support the verbalisation of part-whole relations in isiZulu. We use RosaeNLG

8

to demonstrate how this approach has also been seen for template specifications
that are designed for English. The template specification introduced in Pugjs’11

template engine was extended by introducing the syn_fct function, among other
additions.

• Adaptation: This approach involves using patterns for NCB languages, other
than the ones for which patterns were initially designed. Byamugisha, Keet,
and DeRenzi [44] used the approach to build support for Runyankore, a Ugan-
dan language belonging to the NCB family albeit in a different group than
isiZulu — Keet and Khumalo’s [136] target language. Their approach involves
introducing new values for concords and affixes. It also introduces rules for
specifying the order of words in Runyankore. To an extent, we can observe the
adaptation process for English in Kuanzhuo, Lin, and Zhao’s [146] creation of
SimpleNLG-TI based on the original SimpleNLG [94]. Specifically, they made
use of the categories already presented in SimpleNLG. However, they also in-
troduce a novel “rule bank [that] includes orthography, morphology and syntax
rules [extracted from] Tibetan grammar books” [146].

Both approaches have not focused on architectural considerations to produce reusable
and easy-to-maintain surface realisation tools. They duplicate grammatical agree-
ment rules in their generation algorithms instead of creating mechanisms of allowing
reuse of the same scant resources. This duplication is a result of patterns’ tight cou-
pling of the text generation rules with the template. The adapted/extended patterns,
similar to the original patterns, do not have an explicit declaration of their concepts
and constraints. Consequently, it is impossible to use computational methods to
detect invalid templates (i.e., ones that violate the declared constraints). There are
also no existing surface realiser architectures that can be relied on to produce main-
tainable template-based realisers. We recognise that at first consideration, it may
seem like the reliance on templates in a maintainable realiser is contradictory, but
we concur with van Deemter, Theune, and Krahmer’s argument that even if adapt-
ing such realisers to a new domain requires the development of new templates, such
architectures can still be maintainable since the “underlying generation mechanisms
generally require little or no modification” [273].

The limitations and challenges noted above are a result of the following reasons:

• not having a systematic manner of associating templates with CGRs;
11https://pugjs.org/

9

https://pugjs.org/

• not having a specification of templates that supports interoperability and the
use of existing computational resources for error detection (e.g., a rules engine);
and

• not investigating how best to organise surface realiser modules and artefacts,
especially with regards to how maintainability and reuse in mind.

The approaches described in [134, 44] neglected these issues because the authors were
investigating different research questions. Specifically, Keet and Khumalo [134] were
focusing on the sufficiency of simple templates for generating isiZulu text since the
language has complex grammar. Byamugisha [44] was focusing on the development
of techniques to bootstrap the isiZulu resources for another NCB languages and de-
termine the generalisability of said techniques.

A tool like RosaeNLG is also not viable. The tool was created to make it easy to get
started for engineers with no formal background in NLG. This is most likely why it
was built on top of a popular web templating system12. Its simplicity comes at the
cost of expressiveness, it uses ad hoc approach for pairing templates and rules, and
offers no linguistic support for any African languages.

There is a need to investigate the foundations for modular surface realisation to
support cases like our example scenario. By foundations, we are referring to improved
approaches for pairing templates and CGRs, specifications of templates that support
interoperability, and an architecture for easy-to-maintain surface realisers.

1.5 Problem statement
To the best of our knowledge, there are no systematic and planned methods of as-
sociating templates with CGRs. There are also no specifications of interoperable
templates, especially ones that have support for morphologically rich languages. In
addition, there are no architectures for creating an easy to maintain and reusable
template-based surface realisers. As such, there are no Nguni language surface real-
isation tools that are easy to maintain, can be used for knowledge-to-text and data-
to-text systems, and generate understandable and grammatically correct text.

This problem is significant because governmental organisations such as the SAWS
can use such tools to generate weather reports. Commercial companies can use them
to build a variety of NLG systems to solve their business needs. More importantly,

12https://pugjs.org/api/getting-started.html

10

https://pugjs.org/api/getting-started.html

they can do so without the need to recreate the basic building blocks of these systems
every time. It is currently impossible to achieve this because existing surface reali-
sation methods used for other languages are not viable for Nguni languages. Simple
templates are not fit for purpose because they cannot capture agreement. Existing
template extensions (i.e., patterns and so called augmented templates) are ad hoc
and have several limitations. There are no grammar engines for the languages as the
existing CGRs are limited in scope, and data-driven approaches are not viable due
to lack of corpora.

1.6 Research questions and tasks
This work aims to establish the foundation for reusable and easy-to-maintain and
reusable surface realisers for Nguni languages. We have set out to achieve this by in-
vestigating the three main research questions given below. The questions are sensible
because they address a gap in the theoretical knowledge required to create engineering
solutions that collectively solve the research problem.

RQ1 What are the characteristics of systematic methods of pairing templates and
computational grammar rules to form augmented templates? How do they
enhance the selection of models of templates to support grammatically complex
languages?

(a) How to relate templates with CGRs to support template scaffolding and
resource reuse?

(b) How do the ad hoc models used by NLG existing systems differ concerning
their support for the features mentioned in sub-question 1a?

RQ2 What are the various surface realisation tasks and how can they be organised
to produce surface realisers that are reusable and easy to maintain for Nguni
languages?

(a) How do surface realisation tasks, as found in existing NLG architecture
comparisons, limit the analysis of existing surface realiser architectures at
finer granularity concerning their suitability for Nguni languages?

(b) What are the granular tasks, low-level than the tasks identified in part 2a,
and how can they organised to achieve easy to maintain and reusable surface
realisers for Nguni languages?

11

(c) What are the algorithm(s), template specification(s), and annotation model(s)
that are needed for the relevant tasks mentioned in question 2b in order to
produce correct text?

RQ3 Do Nguni NLG systems that use a realiser that organises its modules accord-
ing to the method established in RQ2 generate text that is correct (i.e., flu-
ent, acceptable, and/or grammatically correct) in selected data-to-text and
knowledge-to-text scenarios?

In order to answer the research questions, we devised the following tasks:

Task 1 Develop a model-based approach to pairing templates and grammar rules.

Task 2 Develop an architecture to be used when organising surface realisation com-
ponents for template-based realisers that are easy to maintain.

Task 3 Create a task ontology to support the capturing of simple templates that sup-
port morphologically-rich languages and achieve interoperability in template-
based systems.

Task 4 Develop proof-of-concept implementations of algorithms and tools required
to achieve the tasks of the architecture’s modules.

Task 5 Evaluate the sufficiency of the developed approaches and artefacts for gener-
ating fluent/acceptable and grammatically correct isiZulu and isiXhosa text.

At the end of the chapter, we will detail how each task was conducted and also
provide a guide on which chapter provides further descriptions of the various tasks.
We now turn to contextualisation of the tasks to clarify how they fit together in a
text generation scenario. We will also specify which task will answer each research
question(s).

1.7 Contextualisation of tasks
To demonstrate the relationship between the various tasks, consider the informal
visualisation in Figure 1.2. We label various parts of the figure with the numbers
corresponding to the tasks in a text generation scenario.

Task 1 pertains to pairing the simple templates and computational grammar rules.
It focuses on the existential relationships used to combine the two assets. For in-
stance, understanding the relationship between some template t and CGR g, would

12

Surface
realisation

Text
5

1

2

4

Template

Computational
grammar rules

Slot
fillers

2

3

Figure 1.2: Informal rendering of the relevant components involved in the surface
realisation task and the numbering of elements that pertain to the identified tasks

make it possible to determine whether g is usable for other templates when t is re-
moved/deleted. We now turn to demonstrate this task’s importance using RosaeNLG13.
When we examine the approaches for encoding rules for synonymy in RosaeNLG, we
see that they can be captured using syn_fct function or synz-syn mixins. The choice
between the two possibilities has implications for the reusability of the rules. This
task’s goal is to offer a foundation for understanding such differences. The task will
answer research question 1 and its sub-parts.

Task 2 focuses on the organisation of the various realisation tasks and their corre-
sponding modules. It builds upon task 1 by identifying various realisation tasks,
technologies required to achieve them, and figures out how they must be organised
to achieve maintainable realisers. The purpose of this task is to make clear the var-
ious differences that are either taken for granted or unknown from an architectural
perspective. For instance, the publication that introduced SimpleNLG [94] drew a
distinction between a realisation engine vs. tactical generation. In addition, Abed
and Reiter [2]’s publication describing Arabic language functions alluded to there be-
ing differences between RosaeNLG and SimpleNLG. However, these differences have
not been explicitly codified in the main. If they are not considered when building
NLG systems, the resulting system may be negatively impacted from an architectural
perspective. This task will answer research question 2 and its sub-parts.

Task 3 focuses on the method used for specifying the templates, especially for sup-
13https://rosaenlg.org/rosaenlg/3.2.1/

13

https://rosaenlg.org/rosaenlg/3.2.1/

port morphologically rich languages. Continuing to use RosaeNLG for demonstrative
purposes, we see that one can extend the notion of templates (e.g., by introducing
mixins for capturing linguistic rules as part of the template) and use a specific lan-
guage to capture such templates (e.g., Pugjs’ custom template language). A tool
like RosaeNLG, since it is built to support well-resourced languages, can afford to
make the synonymy mixins, and possibly other kinds of linguistic rules, as part of
the template in a random or unprincipled manner. However, low-resourced and mor-
phologically rich languages must be deliberate regarding what kinds of components
and rules are part of the template vs. the ones that are separate but used by the
templates. This task will answer research question 2 part (c) by determining the
requirements and creating a task ontology for template specification.

Task 4 pertains to the creation of all the resources required for the various modules
found in the architecture. It will answer research question 2 part (c) as its focus is
building the identified algorithms and annotation models. Task 5 involves evaluating
the quality of the texts and creating a variety of proof-of-concept tools to support
the generation of text in isiXhosa and isiZulu. The task will answer research question
3.

Please note that Figure 1.2 is only illustrative and does not specify what components
should be in the realiser. It also does not commit to any specific organisation of the
augmented templates and slot fillers. For instance, while the computational grammar
rules are represented as being outside the realiser, that need not be the case in the
final architecture to be investigated and created. We now turn to discuss the approach
we have taken in this thesis.

1.8 Research approach
The research approach followed to execute the tasks and answer the research ques-
tions is structured into two main steps: (1) development of a model-based pairing
of templates and CGRs, a task ontology for templates, an architecture for maintain-
able template-based surface realisers, and implementation of the architecture, and (2)
evaluation of the solution concerning the scope and ability to generate understand-
able and grammatically correct Nguni language text. In the following paragraphs, we
elaborate on each of these steps:

14

Solution development We follow a three-step process aimed at producing (i) a
method of pairing templates and CGRs, (ii) an ontology for template specification,
and (iii) a surface realisation architecture that will lead to maintainable tools to solve
the research problem. Specifically, the first step focuses on the theoretical foundations
of pairing templates and CGRs. This involves the creation of a model of pairing
the two artefacts and using it to devise a classification scheme for identifying the
various types of templates that come about when simple templates are paired with
CGRs. We demonstrate the utility of the scheme by classifying all existing templates
that are paired with CGRs, as they are used by as many existing NLG systems
as we could find. The second step focuses on the creation of a template ontology
called Task ontology for CNL Templates (ToCT), formalised in the OWL, to allow
the capturing or serialisation of morphologically-rich templates meant to support
Nguni languages. We determined and captured the requirements of said ontology
prior to development, following best practice. After the creation of the ontology,
we verified that it captures the requirements by determining the answerability of
the SPARQL Protocol and RDF Query Language (SPARQL) queries that translated
from the Competency Questions (CQs). The third step focuses on the architectural
considerations of building knowledge-guided NLG systems that rely on the created
model of grammar-infused templates. More precisely, we identified the key tasks
located in and around the surface realiser in several existing systems. We used them
to create categorisations of the architectures used by existing systems. That allowed
us to identify and fill gaps for a maintainable architecture that is appropriate for
template-based surface realisers. Moreover, we also developed an implementation of
a surface realiser that abides by said architecture.

Evaluation We focus on the engineering of data-to-text and knowledge-to-text sys-
tems for isiZulu and isiXhosa in the final step. We evaluate and demonstrate that
the created surface realisation solution offers advantages over simpler techniques. In
addition, it is capable of generating fluent and grammatically correct text. While we
have evaluated the model-based approach, task ontology, and architecture separately,
the purpose of the final evaluation is to demonstrate that the developed approach and
artefacts, when used together, generate texts of good quality.

1.9 Thesis outline
The rest of the thesis is structured in the following way:

15

Chapter 2: This chapter mainly focuses on a detailed problem demonstration. We
show that the surface realisation techniques for other languages are not sufficient
for the languages in question. Specifically, the chapter begins by providing
background for Nguni languages. It then draws attention to the features that
need to be taken into account when building NLG solutions for these languages.
After that, we provide a brief overview of NLG, with a specific emphasis on data-
to-text and knowledge-to-text systems built for African languages. Lastly, we
discuss existing surface realisation solutions and their limitations in the context
of Nguni languages and use the introduced features to demonstrate their gaps.

Chapter 3: In this chapter, we introduce our model-based approach of pairing tem-
plates and grammar rules. Specifically, we present a mathematical definition of
simple templates, associable grammar rules, and grammar-infused templates.
Based on the relations used between simple templates and CGRs, we demon-
strate the categories of template types that arise. We then classify existing
template-based systems in one of the template categories to get a better pic-
ture of their differences regarding CGR reuse and supported natural languages,
among other things. Lastly, we demonstrate the use of the classification of ex-
isting systems. The proposed model-based approach of pairing templates and
CGRs assists when deciding how to build new template types from scratch. In
addition, it is also useful when selecting a candidate from the existing meth-
ods. We demonstrate this via a use case that focuses on picking an appropriate
template type for supporting isiZulu text generation.

Chapter 4: In this chapter, we create an ontology-based specification of templates
that also supports morphologically rich languages. We determine the require-
ments for a model of templates using our domain knowledge regarding English-
oriented templates and Nguni languages. We then develop the ontology by
relying on a variety of primary knowledge sources to meet those requirements.
We then demonstrate that the developed ontology satisfies our requirements by
using the standard method of relying on SPARQL queries. Lastly, we demon-
strate how to capture isiZulu and Catalan templates using the ontology.

Chapter 5: In this chapter, we develop a novel architecture for maintainable surface
realisers. We design the architecture with special attention for natural language
generation systems that produce low-resourced languages, notably those with
agglutinating morphology. We begin by analysing the architectures used by

16

existing surface realisers. Our analysis focuses on choosing sentential struc-
tures, the method used to encode said structure, and the location of the rules
used to generate text from the structure. The importance of these features
impacts complexity (in the case of location of the structure selection) and re-
usability (in the case of linearisation rules) in the resulting surface realiser. This
process identifies gaps in existing architecture with respect to maintainability,
specifically concerning under-resourced languages. We then present a new ar-
chitecture to address the identified gaps, compare it with existing architectures,
and discuss the utility of using an ontology to capture template knowledge in
the architecture.

Chapter 6: In this chapter, we investigate the quality of isiXhosa and isiZulu texts
through surveys. First, we describe the various proof-of-concept tools and arte-
facts needed to create the two tools used to generate the texts. More specifically,
we present two ontologies for annotating concord types, an implementation of
a grammar engine, and an implementation of the architecture introduced in
the previous chapter. We then present an isiXhosa weather forecast generator
and an isiZulu question generator for evaluating the developed approaches and
artefacts. Both generators use templates captured via the ontology presented
in Chapter 4 and their surface realiser abide by Chapter 5’s architecture. We
demonstrate that most of the texts generated by the systems are judged posi-
tively by survey participants. In addition, the templates include elements that
are outside the scope of English-oriented templates.

Chapter 7: We conclude by demonstrating how the various artefacts, that have been
introduced and evaluated in the previous chapters, collectively solve the research
problem. Moreover, we also present some areas that are interesting as future
work.

Appendix A : We present the competency questions and their associated SPARQL
queries that are used in Chapter 4.

Appendix B We present the materials that are associated with the two surveys pre-
sented in Chapter 6. We have included a human-friendly version of the input
and output from the isiZulu knowledge-to-text system, the survey instructions
presented to participants in all the surveys, and the ethical clearance letter for
the survey.

17

Chapter 2

Background

This chapter aims to provide background knowledge regarding the languages we are
focusing on, i.e., isiZulu and isiXhosa, and the field of natural language generation. It
also discusses the key literature whose focus is surface realisation, with emphasis on
methods used for African languages and their limitations with regard to the research
problem.

We will begin by discussing isiZulu and isiXhosa’s noun classes, their concord-based
agreement systems, and how to apply the necessary grammatical rules when forming
words. We will also discuss the impact of all such features on natural language
generation. In Section 2.2, we will discuss natural language generation in general
terms and also discuss the internals of the Natural Language Generation (NLG)
systems that generate African languages. In Section 2.3 we focus on the architectural
design considerations for NLG systems, even when said systems are generating non-
African languages. Lastly, in Section 2.4 we delve into how existing surface realisers
are created. This entails a discussion of existing architectures and an examination
of how existing realisation techniques are classified. We refine the categorisation and
classify existing techniques anew. The process brings mixed-methods concealed by
high-level categorisations to light.

2.1 IsiXhosa and isiZulu
IsiXhosa and isiZulu are members of the Nguni language group. There are four
languages in the group (i.e., isiXhosa, isiZulu, isiNdebele, and siSwati). The languages
are mostly spoken on the eastern coast of South Africa, as can be seen in Figure 2.1.

18

Figure 2.1: Number of IsiZulu/IsiXhosa speakers for each district municipality in
South Africa, per 2011 municipal borders specified by the Municipal Demarca-
tion Board (https://dataportal-mdb-sa.opendata.arcgis.com/). The number
of speakers is computed using the 2011 Census Community Profiles [262].

IsiXhosa and isiZulu are the largest languages out of all four, by the number of L1
speakers. They are collectively spoken by over 19 million L1 speakers [261].

The two languages, like other Niger-Congo B languages, have agglutinative morphol-
ogy and an agreement system. This means that words are formed by concatenating
morphemes together. In addition, some words have morphemes whose values rely
on other words in the same sentence. For instance, the isiXhosa equivalent of ‘the
people have left’ is abantu bamkile where the underlined part is an affix, called the
subject concord, that is associated with noun class 2. The affix is used in verbs to
denote that its subject is a noun from class 2 (i.e., abantu). In the sentence izinja
zimkile ‘the dogs have left’, the verb root from the previous example has a different
subject concord (zi-) since the noun that acts as the subject, izinja, is from noun
class 7 instead of 2. There are numerous concord types and several noun classes for
each Niger-Congo B language. In this section, we will discuss these characteristics in
detail.

19

https://dataportal-mdb-sa.opendata.arcgis.com/

Table 2.1: List of noun classes and their prefixes in Proto-Bantu (Source: [26, p282-
284])

Language 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Proto-
Bantu

mŭ ba mū mi di/li ma ki pi n thin lu tu ka bu ku pa

2.1.1 Noun classification systems

Nguni languages, like other Niger-Congo B languages, classify nouns into multiple
noun classes. The system is often compared to gender in some Indo-European lan-
guages. However, unlike grammatical gender, the noun classification is not correlated
to biological sex and the number of classes is more than two. The exact number of
classes depends on the language and the classification system used since there are
multiple versions. Before we provide the noun classes of the two languages, we first
present the noun classification for Proto-Bantu, a theoretical ancestor of all Niger-
Congo B (NCB) languages.

A widely recognised classification system was created by Bleek [26]. Its prefixes are
given in Table 2.1. Bleek’s original classification has been amended 9 times since its
creation and the changes were as follows:

1869: Bleek reordered classes thirteen and fourteen [128].

1896: Jacottet reordered classes twelve and thirteen [128].

1906: Meinhof added five additional classes: 17, 18, 19, 20, and 21 [128].

1927: Doke added two subclasses to keep the numbering reverse compatible: 1a and
2a [282].

1967: Cole added two subclasses to keep the numbering reverse compatible: 2b and
8x [282].

1967: Meussen added one new class: class 23 [192].

1971: Guthrie removed class 23 (as listed by [172]).

1974: Welmers added one subclass in order to keep the numbering reverse compatible
(i.e., class 6a) and reintroduced class 23 [282].

Changes to a noun classification are not limited to Proto-Bantu. Recently, Bya-
mugisha, Keet, and DeRenzi [46] refined the classification of seven Niger-Congo B

20

Table 2.2: List of noun classes and their prefixes in isiZulu and isiXhosa (Sources:
[282, 294] and [214])

Class 1 1a 2 2a 2b 3 4 5 6
Zu. um(u) u ab(a/e) o oo um(u) im(i) i(li) am(a/e)
Xh. um u aba oo - um imi i(li) ama
Class 6a 7 8 8x 9 10 11 14 15 16
Zu. ama is(i) iz(i) izi iN iziN u(lu) u(b/bu)? uk(u/w)? pha
Xh. - isi izi - i(N) i(z)i(N) u(lu) ubu uku pha

languages by introducing 25 new classes while keeping the numbering reverse com-
patible, based on their prefixes. Their change is not a reconstruction of noun classes.
It is a reconfiguration for their seven languages to ensure that noun pluralization is
deterministic.

Overall, this shows that there is no unique noun classification. As such, when building
NLG systems for the languages in question, one should be able to pick any preferred
noun classification. It is not enough to rely on the agreed-upon classification at some
specific period since consensus may change. NLG systems need to account for a noun
classification’s minor reordering (as was done in 1869), extension (as was done in
1906), or reverting to an older version (as was done in 1971). More generally, systems
need to be able to interpret how one classification is related to another. This ensures
that systems that rely on one classification system do not fall apart when faced with
an alternative one.

The noun classes and prefix values, as found in the currently prominent classification,
for isiZulu and isiXhosa are given in Table 2.2. We use round braces to denote parts of
the prefix that can be eliminated by vowel processes. The capital N (e.g., as found in
class 2b in isiZulu) denotes the nasal that may either be -m- or -n-, and the question
mark after braces indicates that the values contained therein are optional (e.g., as
used in class 5 in isiZulu). There is no consensus regarding the semantics of noun
classes [128] and most authors rely on the rough guide presented in Table 2.3. Early
linguists argued that the noun classes are not a semantically motivated categorization
[128]. However, several authors have attempted to disprove that for Proto-Bantu [76]
or individual Niger-Congo B languages such as Kikuyu [39], Swahili [63], Shona [217],
Sesotho, Setswana, isiZulu, and Siswati [75]. Despite these proposals, however, there
is no consensus on the matter. Hence, we also rely on Table 2.3 for guidance on
interpreting the noun classes.

21

Table 2.3: Illustrative semantic content of each noun class [128]

Noun Class Semantic content
1, 2 Human beings
1a, 2b Proper Names, Kinshop terms, Personifications
3, 4 Natural phenomena, Body parts, Plants, Animals
5 Natural phenomena, Animals, Body parts, Collective nouns, Augmen-

tatives, Derogatives
6 Regular plural of classes 5 and 14; Mass terms and liquids, Time refer-

ences, Mannerisms, Modes of action
7, 8 Body parts, Tools, instruments and utensils, Animals and insects, Lan-

guages, Diseases, Outstanding people, Amelioratives, Derogatives, Aug-
mentatives, Curtatives (shortness and stoutness), Mannerisms

9, 10 Animals, People, Body parts, Tools, instruments and household effects
11 Long, thin entities, Languages, Body parts, Natural phenomena, Imple-

ments, utensils and other artifacts
12, 13 Augmentatives, Derogatives, Diminutives, Amelioratives
14 Abstracts, Collectives
15 Infinitives, a few body parts e.g. arm, leg
16, 17, 18, 23 Location terms
19 Diminutives
20,22 Derogatives, Augmentatives, Diminutives, Amelioratives, Mannerisms
21 Augmentatives, Derogatives

2.1.2 Concordial agreement

IsiZulu and isiXhosa have several morphemes (i.e., sub-lexical items) used to mark
agreement between certain parts. They are called concords and there are two cate-
gories of these morphemes, namely those derived from nominal and pronomial affixes.
The concords derived from each affix category [34] and the Part-of-Speech (POS) cat-
egories they affect [192] are listed in Table 2.4.

While Meeussen [192] lists five categories, his numerical and verbal (initial and pre-
radical) affixes are only subcategories of the pronomial. In the table, we continue
using the guillemets notation taken from [192]: «1-5» refers to the first five cardinal
numbers, we assume that «how many» refers to quantifiers, «other» refers to
the demonstrative, and «which» refers to the interrogative determiner. There are
long and short forms of the relative and adjectival concords. The short forms exist
in isiXhosa but not in isiZulu. Likewise, the phi/mbi concords only exist in isiXhosa
[34]. The values for each concord type can be found in Bourquin [34]. The concords
and other morphemes of a word can be listed following the morphotactical rules of
the language but appending them together is not guaranteed to lead to well-formed

22

Table 2.4: List of Niger-Congo B language agreement affixes and the POS categories
they are found in (Source: [192])

Affix category Concords Affected POS

1. Nominal
adjectival 1a. nouns

enumerative 1b. locatives
1c. adjectives

2. Pronominal

subjectival 2a. substitutives
objectival 2b. connectives
relative 2c. possessives

possessive 2d. demonstratives
phi/mbi 2e. determinatives

2f. «other»
2g. «which»

2h. relative verb forms
2i. absolutive verb forms

2j. verb forms
2k. «1-5»

2l. «how many»

words. The reason is that there are morphophonological alternation rules that need
to be applied. Sometimes, they are referred to as phonological conditioning/mutation
rules. The next section will discuss them.

2.1.3 Phonological conditioning

Phonological conditioning rules are responsible for selecting the appropriate allo-
morph given some morpheme and context. For instance, when pluralising English
words one has to select the appropriate allomorph for the sibilant [s] as a suffix. For
instance, when pluralising the word test then one gets tests and when pluralising the
word English then one gets Englishes. In the two words, the eventual value of the
allomorph [s] is either -s or -es.

In the case of isiZulu and isiXhosa, these rules are responsible for eliminating con-
secutive vowels in the languages under consideration since such vowels “occurring
in a single phonological word [are] unacceptable in Nguni [languages]” [252, pg38].
For isiXhosa and isiZulu, we shall consider only the three main categories of these
rules; coalescence, gliding, and deletion. Table 2.5 summarises the vowel combina-
tions.

Coalescence occurs when “two identical vowels come together to form a single monomoraic
one with the same features and those involving two different vowels whose product

23

Table 2.5: Combinations of vowels in isiXhosa and isiZulu. Abbreviation(s): IsiZulu
= Zu and isiXhosa = Xh. (Sources: [252, 275, 222, 228])

IsiXhosa

Left
Right a e i o u

a a e e o o
e ya e yi — yu
i i/(ya) e/(ye) i o/(yo) —
o wa we — — —
u a/(wa) e/(we) i/(wi) o(wo) —

IsiZulu

Left
Right a e i o u

a a/(wa) e e/(yi) o o/(wu)
e ya e e — e
i a/(ya) e/(ye) i o/(yo) u
o wa we we — —
u ∅/(wa) ∅/(we) ∅/(wi) ∅/(wo) ∅/(wu)

is a single monomoraic one with non-conflicting features from the two vowels that
combine” [252, pg38]. Gliding occurs in “combinations of two vowels where the first
in the sequence is” [252, pg40] a high vowel (i.e., i or u). Lastly, deletion refers to “the
dropping of a vowel” [252, pg45]. In Table 2.5, we do not include the transformations
that Sibanda [252] includes with question marks as they are speculative. Moreover,
use the empty set symbol (∅) to denote the empty string and use round braces for
multi-character strings when there is an alternate value for a vowel combination.

We now use the isiXhosa table to demonstrate how the values resulting from the
various processes are obtained, depending on their context. Coalescence is partially
represented in the diagonal of the table. It is also responsible for eliminating the cases
where the left vowel is a and the right vowel is either i or u [252, pg29]. On the other
hand, when the left vowel is high or is a mid-vowel then then gliding is responsible
for turning it into a semi-vowel (e.g. i+enza becomes yenza [252, pg40]). However,
the following constraints apply:

• In cases where consecutive vowels are preceded by a consonant then glide forma-
tion and glide deletion occurs unless the left vowel is u (e.g. si + enza becomes
senza and not syenza).

• In cases where consecutive vowels are preceded by a labial consonant then glid-

24

ing results in a bilabial, but those are not permitted in Nguni languages. These
consonants are the kind that are articulated with either one or both lips. This
is resolved using the following two rules: (1) if the bilabial is in the initial sec-
tion of the word then glide deletion must occur (e.g. bu + enza becomes benza,
not bwenza) and (2) if the bilabial is non-initial then palatization (See Herbert
[107] for more details) must occur on top of the glide deletion [252, pg42] (e.g.
impuphu + ana becomes imputshana, not impuphwana).

The last process, deletion, is represented using only two cells in the table since it only
occurs when the vowel a is followed by a semi-vowel. In particular, a+e becomes e and
a+o becomes o. As such, it can also be captured via simple table-based retrieval.

The discussed features highlight that any NLG system that supports the generation of
the Nguni languages needs a flexible mechanism to capture noun classes, morphologi-
cal dependencies that are due to the noun classification, and phonological conditioning
rules to produce well-formed words, in addition to regular care for morphotactics and
sentential grammar rules. One must be able to swap the noun classification, should
the need arise, since there are numerous versions of noun classifications. Moreover,
the combination of vowels needs to be sensitive to the phonological features of their
surrounding elements.

2.2 Natural language generation
NLG is a research field that is concerned with building systems that can automat-
ically generate text from a non-linguistic representation of information [68]. The
generated text conveys or communicates some specific information to humans. The
non-linguistic input may either be data, information, or knowledge. It can also be
transformed to other intermediary structures before mapping it onto natural language
text. Even when systems take in input that can be classified into a single category
(e.g., data), they may still exhibit a number of differences. For instance, while all
the systems described by Liu and Lapata [161] and Kasner, Mille, and Dusek [126]
are trained in an end-to-end fashion, one system expects text as input while another
expects a table. It must also be noted that the aforementioned systems are not mod-
ular in the traditional sense and can be used for summarisation, style transfer, fixing
source code bugs, etc. Since our focus are (data/knowledge)-to-text systems only, the
rest of the section will focus on systems that take in data or knowledge, and exclude
all other input types.

25

NLG systems tend to differ significantly with respect to their architectures and we
will discuss that aspect in detail in Section 2.3. In this section, for convenience, we
shall introduce NLG systems with an emphasis on modular systems. In the traditional
NLG tasks, as illustrated in Figure 2.2, one starts by reading in the input and deciding
which information is to be communicated. Then, one decides which concepts should
be communicated in the same sentence, choosing words to use for specific concepts,
and deciding when to use referring expressions (e.g. “He loves them vs. John loves
Jason and Mary”). Lastly, it focuses on converting the abstract representations of
the information into natural language words [68, pg49].

We will discuss differences between systems that take in data vs. knowledge as input
in the following subsections. This differentiation of NLG systems is of interest be-
cause it will be used to demonstrate the wide applicability of the surface realisation
techniques to be introduced. We will also discuss the existing work for generating
African languages for each of the two types of NLG systems.

2.2.1 Data-to-text generation

The input taken by data-to-text systems is raw data (i.e., sensor data, sports statis-
tics, numerical prediction model data, etc.). These systems offer several benefits
when compared to manual report creation. For instance, one can easily produce re-
ports tailored to their target audience without incurring significant additional costs
(e.g., [274]) or automatically produce reports for behavioural change while preserving
individual privacy (e.g., [37]).

Data-to-text systems tend to follow an architecture similar to the popular three-step
pipeline [68] as illustrated in Figure 2.2, but their architectures have an additional
step: signal analysis. They resemble the architecture used in the BabyTalk project
[242] as shown in Figure 2.3. A similar architecture whose first focus is data extraction
and concept identification can be found in the older NLG system called Forecast

Document
planner
 Microplanner Surface

realiser

Communicative

goal

Surface

text

Text
specification

Document
plan

Figure 2.2: Three step pipeline NLG system architecture (Adapted from Dale and
Reiter [68])

26

Signal
analysis

Data
Interpretation

Document
planning

Microplanning and
surface realisation

Text

Numeric
input
data

Event input data

Patterns

Messages
and

relations

Selected messages, document
and rhetorical structures

Figure 2.3: Data-to-text system architecture used in BabyTalk (Adapted from Reiter
[242])

Generator (FoG) [139]. In that system, weather maps are fed into a conceptual
formation module where forecaster edits are possible via a graphical bulletin editor.
All of these steps happen before any linguistic processing.

The dominant approach followed by extant data-to-text systems in the research com-
munity is to make use of neural networks, even though that might not be the case in
commercial enterprises. These systems often decompose the task such that the goal
is to map the input data to some vector and then use that vector to generate the
output. Most of the early systems of this nature did not introduce a lot of variation to
the encoder-decoder architecture popularised by Machine Translation (MT) research
[266]. Recently, there has been a growth of NLG systems that abide by the encoder-
decoder architecture and introduce an explicit planning component (e.g., [231, 56]).
Castro Ferreira et al.’s [51] work even went further by exploring the use of the tradi-
tional pipeline architecture where neural models for a number of modules.

Irrespective of the approach taken, there are existing tools and infrastructure to
support most processes in an architecture’s steps/modules. For instance, numerous
algorithms are usable within the signal analysis module (e.g., apriori algorithm for as-
sociation rule mining). Such algorithms are invariant to the domain area. High-level
programming languages support data structures to capture messages and relations
required by the data interpretation module. Similarly, there are a number of neural
network library that can be used train models for various programming languages.
Likewise, all high-level programming languages can easily support the creation of

27

lexicalisation, aggregation, and referring expression generation rules. Concerning
languages like English, human-crafted templates, human-crafted grammar-based sys-
tems, statistical approaches, and neural approaches can support surface realisation
[93]. While there are numerous tools and methods to support languages such as En-
glish, there are only constrained tools that can take text specifications and transform
them into well-formed isiXhosa and isiZulu text. We will discuss them in the next
section.

2.2.1.1 Existing work on African languages

To the best of our knowledge, there are no data-to-text generations systems built for
African languages. There has been limited work in building computational grammar
rules for isiZulu and isiXhosa to support the generation of weather forecast verbs
[167].

Even though there is no complete data-to-text NLG system for Nguni languages at the
time of writing, continuing with a grammar-only approach would not be desirable. It
cannot be sufficient for several domains without the labour-intensive task of building
comprehensive Computational Grammar Rules (CGRs). CGRs are linguistic rules
that are captured in some form that can be processed by a computer. The approach
is not sufficient because only a few Niger-Congo B languages have CGRs and those
CGRs have limited coverage (see [15, 45, 135, 167, 207, 229]).

2.2.2 Knowledge-to-text generation

Knowledge-to-text systems take ontologies or conceptual models as input [206]. They
are used as a means of presenting modelling languages to people who are not knowl-
edge engineers or logicians in an accessible manner, or as modules in Question an-
swering (QA) systems, computer-assisted learning systems, etc. When the input is
an ontology, rendering it in natural language is called ontology verbalisation.

The popular three-step pipeline architecture, illustrated in Figure 2.2, is used by most
verbalisation systems. In such an architecture, there are modules concerned with de-
ciding which information to communicate, which information should be separated,
and which words to use for events. There is also a module responsible for mapping
decided-upon abstract structures to natural language sentences. An example of such
a system is NaturalOWL [8] and its architecture is shown in Figure 2.4. The sys-
tem transforms Web Ontology Language (OWL) statements into English and Greek
text.

28

Figure 2.4: Knowledge-to-text system architecture used in NaturalOWL (Source:
Androutsopoulos, Lampouras, and Galanis [8])

The above system is not the only kind of knowledge-to-text system. The WebNLG(+)
challenges held in 2017 and 2020 led to a number of systems that can verbalise
Resource Description Framework (RDF) triples, for instance. In the first challenges
description, the following input/output examples where provided:

1. Input: (John_E_Blaha birthDate 1942_08_26) (John_E_Blaha birthPlace
San_Antonio) (John_E_Blaha occupation Fighter_pilot)

2. Output: John E Blaha, born in San Antonio on 1942-08-26, worked as a fighter
pilot

In the input given above, there are three triples and the subject of all triples is
a person represented using the element called John_E_Blaha. The triples specify
that person’s birth date, birth place, and occupation in that specific order. The
systems entered to the challenges had to find ways of lexicalising the various RDF
elements, determining how to combine the segments, and producing the file sentence
(among other tasks). It must be noted that the WebNLG+2020 challenge offered
additional tasks: generating Russian instead of English and parsing RDF triples from
English or Russian text. Overall, these challenges led to a number of international
teams developing NLG systems. Some of these systems used the previously described
pipeline architecture. However, a number of them relied on a statistical or neural
machine translation model. Such systems do not split the generation task into the
same subtasks as the pipe architecture. We will describe how they function, with
respect to surface realisation, in detail in Section 2.4.

Similar to data-to-text systems, there are tools and infrastructure to support the
processes in the various modules in the case of pipeline systems. Similarly, there are
a number of software frameworks and libraries that can be used to create Statistical
Machine Translation (SMT) and Neural Machine Translation (NMT) models. For
instance, there are existing computer-oriented languages to support the representation

29

of concepts and the relations that exist between them (e.g., OWL). Any high-level
programming language can support text planning. There are numerous approaches for
surface realisation; namely, templates, statistical and neural techniques, and grammar
rules. In particular, there are reusable surface libraries such as SimpleNLG [94] and
its adaptations for English, French, Italian, Spanish, Brazilian Portuguese, Dutch,
Galician, German, and Tibetan [277, 186, 235, 74, 120, 90, 28, 146]. Unlike the
situation for data-to-text systems, there are existing knowledge-to-text systems for
African languages. We will discuss them in the following section.

2.2.2.1 Existing work on African languages

Only patterns [43, 136] and templates [249] have been pursued for knowledge-to-
text for African languages. In particular, they have been used to build Controlled
Natural Languages (CNLs) to support ontology verbalisation for Runyankore [43],
isiZulu [136], and Afrikaans [249]. Templates have been used by languages with
simple morphology (e.g., Afrikaans [249]). Low-resourced languages that also exhibit
grammatical complexity use patterns (i.e., Runyankore [43] and isiZulu [136]). In
particular, they combine templates and CGRs such that the CGRs compensate for
the inadequacies of the templates, if any, and vice versa. This makes them have
wider domain applicability since the constituents of the underlying template should,
theoretically, be able to support all domains. Practically, however, the patterns [43,
136] that support Niger-Congo B languages have wholly relied on grammar rules
whose scope and pairing with templates is done for specific purposes.

We now turn to explain the purpose of the existing patterns and how they pair tem-
plates and grammar rules: the patterns have been created for generating prescriptions
from OWL [44, 43] and verbalising OWL ontologies that have specific features, no
matter their domain [136]. As a side effect, the patterns lack constituents that are
required to support all agreement relations that exist in the Niger-Congo B languages.
For instance, the original constituents in the isiZulu patterns (as first presented by
Keet and Khumalo [136]) required the amendment of the possessive concord and loca-
tive affixes to support domains that require the verbalisation of part-whole relations
[134]. In addition, the architecture used by the pattern-based systems is such that
the linearisation algorithm is tight-coupled with the template specification. The lin-
earisation algorithm is responsible for inserting values into slots, resolving the shared
affixes, and applying phonological conditioning rules, etc. to obtain surface text. As

30

a consequence, one must re-instantiate that algorithm for each domain for which one
builds templates.

In summary, while patterns [43, 136] are the only practical method used to generate
text in two different Niger-Congo B languages, they are not geared for general-purpose
use. There are also no domain-independent tools for linearising patterns. In addition,
unlike well-resourced languages, the use of SMT and NMT has not been seen for the
language due to a lack of training data.

2.3 Existing analysis of NLG system architectures
In the previous section, we introduced NLG systems using pipeline architectures.
However, not all systems use such architectures. More generally, there are numerous
system architectures and they differ based on modularity and the direction of data
flow. The architectures are summarised in Table 2.6.

Table 2.6: Classification of NLG architectures (Based on [255, 93])

Integrated Modular

End-to-end Interleaved Unidirectional
Interactive What and How

Planning-based Blackboard Three-step pipeline
Classifier cascades Revision-based Four-step pipeline

– – Generate and select

Systems that do not have any modules dedicated to specific tasks are called integrated
systems [255]. There are three kinds of these architectures: end-to-end, planning-
based, and classifier cascade architectures. End-to-end architectures are very popular
with extant deep learning systems (e.g., [84]). In such architectures, there is a neural
network, called the encoder, whose function is to generate a continuous representa-
tion from the vectorised input. The encoder’s output is then fed into another neural
network, called the decoder, that uses the representation to generate other vectorised
sequence [206]. While systems that follow this architecture may differ in a num-
ber of ways (e.g., some may use a character-to-character model while others may
use word-based models), they all have two main ‘modules’ (i.e., the encoder and de-
coder). Nonetheless, these two ‘modules’ are not dedicated to the tasks introduced
in Section 2.2 and its not trivial to identify which module NLG enables tasks like
referring expression generation, surface realisation, etc. Planning-based architectures
are popular with dated systems that viewed generation as a problem of searching for

31

a sequence of actions, in some action-space, that transforms the initial state (i.e., the
input) to some goal state (i.e, the output). Classifier cascades are used in the un-
common NLG systems that treat generation as a classification task (e.g, [182]). The
planning-based methods and classifier cascades are not modular in the same sense of
the NLG modularity introduced by Dale and Reiter [68]. In other words, their actions
or classifiers can “cut across the boundaries of many of the tasks that are normally
encapsulated in the classic pipeline architecture, combining both tactical and strate-
gic elements by viewing the problems of [“what to say”] and [“how to say it”] as part
and parcel of the same set of operations” [93, p. 86]. The two architectures, unlike
end-to-end systems, are not black-boxes as it is possible to interpret the actions or
classifiers. Nonetheless, since these non-modular architectures do not have a separate
module that transforms their internal specifications into natural language text, it is
impossible to isolate and analyse such a module’s architecture. If they were modular
then it would be possible to identify and resolve problems pertaining to referring
expression generation, while keeping the other identifiable modules frozen, and that
module can be reused elsewhere as needed. A modular approach is sometimes better
than its integrated counterparts since it reduces complexity by making the various
dependencies between an NLG systems’ tasks visible (cf. a black-box approach are
difficult to control [156]).

Modular architectures do have identifiable components that are responsible for surface
realisation. These architectures can have two (e.g., [149]), three (e.g., [68]), or four
(e.g., [242]) modules. The modules do not only differ in number, they sometimes differ
in responsibilities. For instance, Langkilde-Geary and Knight’s [149] HALogen system
has two modules where the first is responsible for translating the input to a “forest
of possible expressions” and selects the most likely output using an n-gram model.
Dale and Reiter’s [68] 3-step pipeline architecture, on the other hand, does not have a
statistical filtering module. Its modules are responsible for document-level structure,
word choice and sentence-level, and the application of linguistic rules. Reiter’s 4-step
data-to-text architecture extends the one proposed in [68] and introduces a signal
analysis and data interpretation module for processing the input.

NLG systems that use these architectures come in two categories, interleaved and
unidirectional architectures, and the only difference between the two is the direction
of data flow. Interleaved systems allow for a back and forth between modules for
communicating errors detected by a downstream module back to the upstream module

32

that caused them. These types of systems are rare due to the engineering difficulty
associated with building them.

A popular, but now dated, approach of thinking about modular architectures has
been to aggregate the various modules into two classes: those that are responsible for
what and those responsible for how (i.e., “What to say” and the other for “How to
say it”). The two module classes have also been referred to using other names and
they can be found in [255]. The pipeline architectures with three or four modules [68,
242] are the mature versions of Reiter’s consensus architecture [241]. The generate-
and-select architecture [149] makes use of mapping rules for transforming the input
into multiple possible sentences1 and ranking via a statistical module.

There has not been an examination and comparison of the realiser component across
the different architectures. The only architectural discussion surrounding the realiser
is the distinction made between a tactical realiser vs. a grammar engine [94] and
demonstration that there is no agreement on what low-level tasks should be in the
surface realiser [196] for systems that use the three-step pipeline architecture. Both
analyses are limited because while Gatt and Reiter argue for a realiser that is respon-
sible for “spell[ing] out the syntactic constraints of the language in which an utterance
is to be generated” [267, p58], they do not make explicit what tasks are required to
do so. Moreover, the architecture comparison by [196] only considers three-step ar-
chitectures and it is high-level with respect to the tasks it considers. For instance,
there is no breakdown of the ordering task (i.e., “the choice of linear ordering of the
elements of the text” [196, p4]) to identify differences in how realisers achieve it.

To the best of our knowledge, there is limited work that analyses the differences
between existing realisation components. Most research that has scrutinised archi-
tectural matters only focused on a top-level analysis. In the following section we will
discuss the various techniques used for surface realisation in depth. In particular, we
will make clear what tasks are achieved by tools such as SimpleNLG [94] and how
they compare to related tools.

2.4 Text realisation
Text realisation, or linguistic realisation, refers to the “task of converting abstract
representations of sentences into the real text” [68, pg49]. The differences in surface

1These rules do not appear to be separated into modules based on the description in the paper
but could be since they have different responsibilities

33

realisation approaches have been examined using the following design choices, some
of which are architectural:

C1: Categorisation into canned text, templates, phrase-based, and feature-based
systems [113, pg140-142]

C2: In-depth vs. surface generation [41]
C3: Realisation engine vs. tactical generator [94]
C4: Categorisation into templates, grammars, statistical methods, and neural-based

generators [93, 206]

The C1 analysis is a categorisation of realisation approaches into four types. In
it, the canned text refers to a fixed string that may be associated with a specific
intent. For instance, in a hypothetical thesis submission portal, one may generate the
fixed text “You’ve already submitted your thesis” when a Ph.D. student uploads a
duplicate thesis again and that action is not allowed. Templates are fixed texts that
have gaps to allow for some variability and reuse. For instance, one could use the
template “You’ve already submitted your [documentType]” when notifying the user
about different types of documents (e.g., technical report, research paper, and thesis)
without creating canned text for each. The phrase-based category refers to methods
that rely on phrase structure grammars (e.g., context-free grammars). The feature-
based category refers to grammar formalisms that use attribute-values structures
(e.g., Systemic functional grammar).

The C2 analysis separates template/canned text-based systems designed for a specific
application (surface generators) from knowledge-based systems that have reusable
components. The knowledge-based systems are theoretically motivated (in-depth
generators). The analysis has been critiqued for its caricature of template-based
methods as being simplistic and not linguistically motivated [273].

The C3 analysis relies on understanding the distinction between strategic vs. tactical
generation; the former refers to planning while the latter refers to realisation (see
[113, 188]). In an NLG setting, planning is about determining “what to say” while
realisation is about “how to say it”. With that in mind, C3 further divides realisation
into two tasks: making tactical decisions and applying routine linguistic operations.
Tactical decision making refers to making “appropriate linguistic choices given the
semantic input” [94]. Routine linguistic operations pertain to constructing a “syntac-
tic representation, applying the right morphological operations, and linearising the
sentence as a string” [94]. For instance, Figure 2.5 shows that the Nigel [177, 178]

34

Systems

Realiser
operators
 Choosers Text plan

Knowledge
base

start

Function
association

table

hub(s)

enquiry

Framework

feature

Text

Realisation
engine

Tactical decisions

Tactical generation Strategic generation

Figure 2.5: Demonstration of the NIGEL grammar within an architecture of the
PENMAN project. The framework refers to PENMAN’s components that lie outside
of NIGEL. (Based on [177, 178])

grammar uses its systems and their associated choosers for making tactical decisions
and invokes its realisers to apply the various linguistic rules.

The C4 categorisation is similar to C1, but its classes are slightly different due to the
surge of data-driven approaches and the decline of canned text. In C4, the phrase-
based and feature-based categories collapse into the grammar category. Statistical
models refer to approaches that convert internal abstract representations (denoted si)
to natural language text (denoted n) using the noisy-channel model argmaxnp(si|n) =
argmaxnp(n|si)p(si). The neural category refers to the use of neural networks, often
deep, to generate text.

In the following sections, we will discuss the architectures used by surface realisers
and our classification of existing realisers.

2.4.1 Classification of techniques

In this section, we will categorise the various existing realisation techniques similar
to the C4 categorisation. However, unlike C4, we do not focus only on primary

35

Templates
(T)

Computational
Grammar
rules (G)

Data-driven
models (DD)

 Computational

grammar rules and

templates

(GT)

Data-driven

models

and

templates

(DDT)

Data-driven

models and

grammar rules
(DDG)

Figure 2.6: Existing surface realisation approaches. Abbreviations: T = templates, G
= computational grammar, DD = data-driven models, GT = combined templates and
computational grammar rules, DDT = combined templates and data-driven models,
and DDG = combined grammars and data-driven models

categories. We also clarify the approaches that combine those methods, as illustrated
in Figure 2.6.

2.4.1.1 Templates (T)

A traditional template is a sequence of unchanging words or word segments, at least
one slot, and semantics for filling slots. An example of a template from a soccer
summary generation system is shown in Figure 2.7. Templates are used in a variety
of domains and implemented using different technologies (e.g., [249, 158]). They are
suitable for languages, or domains, with little to no grammatical agreement. There
are numerous template languages and associated template engines (e.g., Thymeleaf2,
Apache Velocity3, Jinja4), and a large portion of them are designed for web page

2https://www.thymeleaf.org/
3https://velocity.apache.org/
4https://palletsprojects.com/p/jinja/

36

https://www.thymeleaf.org/
https://velocity.apache.org/
https://palletsprojects.com/p/jinja/

Original dutch: [red player] zou na [minute] minuten met een rode kaart het
veld moeten verlaten nadat hij een overtreding beging.

Translated English: [red player] should leave the field after [minute] minutes
with a red card after he committed a foul.

Figure 2.7: An example of template used to generate soccer text. Slots shown using
square braces and bold highlighting. (Source: van der Lee, Krahmer, and Wubben
[274])

templating but can be used for generating natural language text.

2.4.1.2 Computational grammar rules (G)

The second category of surface realisers uses hand-coded grammar rules. Systems
of this nature come in two types: namely tactical generators and grammar engines
[93]. Large scale realisers are responsible for tactical generation (i.e., tactical decisions
and the application of grammar operations for linearising a sentence) while grammar
engines are only responsible for the second task [94] and leave the first to the discretion
of the engineer. We will briefly discuss the dated method of using large realisers and
introduce existing grammar engines in this section. We discuss both types of CGR-
based realisers to draw attention to the reason why extant NLG systems have opted
for grammar engines instead of large realisers.

Tactical generators An early example of a tactical generator is the Penman gen-
eration system [179]. Its architecture is given in Figure 2.8. The Mann et al. [180]
panel’s recommendations influenced the design of the realiser. The system has the
following modules and characteristics: a comprehensive natural language grammar,
means for knowledge representation, a model of the text reader, and a model of
discourse. In particular, it uses a comprehensive systemic functional grammar called
NIGEL [177, 178]. It also uses the PENMAN upper model, a linguistic upper-ontology
formalised in LOOM [17], and a domain model that is to be created by the engineer
and aligned with the PENMAN upper model. The system also uses rhetorical struc-
ture theory for the creation of the discourse model [114]. It is superseded by Komet-
Penman Multilingual (KPML), a multilingual generation environment [18].

Tactical generators such as GenDR [151] and AlethGen/GL [61] rely on Meaning-text
Theory (MTT) as a foundation. MTT [122, 193] is a stratified feature structure-based

37

Figure 2.8: Architecture of the PENMAN reusable tactical generator. Abbrevia-
tion(s): SPL = Sentence planning language. (Based on [179, 114, 127])

framework that captures semantics, syntax, morphology and phonology. Similar to
systemic functional grammar, MTT is reliant on feature structures. GenDR is re-
sponsible for tactical decisions via the semantic module and partial realisation tasks
via a syntactic module. Overall, it takes in a semantic graph (SemR) and produces
surface syntax representations (SSyntR). The realisation tasks are partial because it
only transforms the deep syntactic representations (DSyntR) to SSyntRs and does
not continue with the transformation to surface text. AlethGen/GL conducts both
tactical decisions and realisation operations via grammar rules. In particular, it con-
verts Events, custom structures produced by the sentence planner, to semantic rep-
resentations (SemR). This conversion is essentially a transition from its additional
stratum called the Events layer to MTT’s semantic layer. It then uses the grammar
rules to transform the SemRs, via the intermediate representation, to obtain surface
text.

While the design decisions of such systems are sensible, the use of these realisers in
contemporary NLG applications has gone down for practical reasons. These realisers
exhibit control issues as a result of making tactical decisions their responsibility [94].
More precisely, such systems require a specialised input form and, as a consequence,
they offer no direct way for control over how “phrases are built and combined, in-
flectional morphological operations, and linearisation” [94, p91]. In this work, we do
not invest time building such large realisers for the languages in question as that is a
risky endeavour, i.e., it is likely that NLG engineers would not adopt such a system
due to the discussed control issues.

38

Realisation engines Most existing grammar engines use constituency-based gram-
mar formalisms. These formalisms rely on constituency, the relation that exists be-
tween words when they tend to go together, and organise words in a hierarchical
structure (e.g., [S [NP This] [VP [V is] [NP a dog]]] using bracket notation). The
formalisms have two main components: the lexicons and elements that can be used
to form the syntactic structure. When used in the context of NLG, the declara-
tive lexicon component is paired with morphological categories and transformational
rules. The SimpleNLG engines make use of such a grammar formalism for languages
such as English [94], German [28, 36], French [277], Brazilian-Portuguese [74], Italian
[186], Spanish [235], and Tibetan [146] using the Java, C#, and Python programming
languages5.

The components of these engines can be grouped into three categories: structural
components of the text (i.e., list and document), lexical components (i.e., word and
inflected word), and (3) phrasal components (e.g., coordinated phrases, phrase, etc.).
The phrasal components are not all two-dimensional constituent structures since the
canned text component is one-dimensional. We demonstrate how to use use Sim-
pleNLG using the English template given in Figure 2.7, when captured using Sim-
pleNLG we obtained the code listed in Listing 2.1 (explained afterwards):

Listing 2.1: Java source code for generating English soccer text using SimpleNLG
1 HashMap<String, String> infractions = new HashMap<>();
2 infractions.put("Matthijs de Ligt", "10");
3 infractions.put("Georginio Wijnaldum", "15");
4

5 for (String playerName : infractions.keySet()) {
6 Lexicon lexicon = Lexicon.getDefaultLexicon();
7 NLGFactory nlgFact = new NLGFactory(lexicon);
8

9 NPPhraseSpec slot1 = nlgFact.createNounPhrase(playerName);
10 VPPhraseSpec vpPhraseSpec = nlgFact.createVerbPhrase();
11 vpPhraseSpec.setFeature(Feature.MODAL, "should");
12 vpPhraseSpec.setVerb("leave");
13

14 NPPhraseSpec fldClause = nlgFact.createNounPhrase("the","field");
15 PPPhraseSpec minClause =

nlgFact.createPrepositionPhrase("after",
infractions.get(playerName)+" minutes with a red card");

16 PPPhraseSpec subClause =
nlgFact.createPrepositionPhrase("after", "he committed a
foul");

5https://github.com/simplenlg/simplenlg

39

https://github.com/simplenlg/simplenlg

17 SPhraseSpec rClause = nlgFact.createClause(fldClause, minClause,
subClause);

18 SPhraseSpec sentenceStruct = nlgFact.createClause(slot1,
vpPhraseSpec, rClause);

19

20 Realiser surfRealiser = new Realiser(lexicon);
21 System.out.println(
22 surfRealiser.realise(sentenceStruct)
23);
24 }

In the snippet, we begin by creating mock infraction data where we specify the offend-
ing player’s name and the number of minutes they must leave the field (lines 1-3). We
then retrieve SimpleNLG’s default lexicon (line 6) to create the NLGFactory (line 7), a
class for creating syntactic structures, and the realiser (line 20). The default lexicon’s
schema is given in Figure 2.9. We then create a phrase for the template’s first slot
using the player’s name (line 9) and construct a verb phrase and noun phrase for the
following fixed segments (lines 10-14). Following that, we construct the prepositional
phrases where one of them includes the second slot (line 15-16). The final sentential
structure is created using the smaller syntactic structures (line 18) and then linearised
to produce the final sentence (line 22).

SimpleNLG influenced the jsReal(B), an engine which was created to support NLG
for English and French in web development [200, 150]. JSRealB is a web-focused
realiser and it is heavily influenced by SimpleNLG-EnFr [277]. Nonetheless, the engine
differs from SimpleNLG with respect to the elements it supports, as can be seen in
Table 2.7.

Another realisation engine that relies on a constituency-based grammar is Grammat-
ical Framework (GF). Unlike SimpleNLG and jsRealB, GF supports a wide array of
languages. At the time of writing, it supports 36 languages via its Resource Gram-
mar Library (RGL). It also supports a wider range of structural, phrasal, and lexical
components than SimpleNLG6 and jsRealB7 as can be observed from the framework’s
components in Table 2.7. The differences in lexical categories may not be significant
as SimpleNLG has an inflected word type InflectedWordElement (via the NLGFac-
tory’s createInflectedWord method) and obtains its various forms through the use of
features.

6https://github.com/simplenlg/simplenlg/tree/master/docs
7https://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en

40

https://github.com/simplenlg/simplenlg/tree/master/docs
https://rali.iro.umontreal.ca/JSrealB/current/documentation/user.html?lang=en

Lexicon

Word

+ id: string

+ base: string

+ category: string

+ present3s: string

+ ditransitive: string

+ intransitive: string

+ past: string

+ pastParticiple: string

+ presentParticiple: string

+ transitive: string

+ classifying: string

+ comparative: string

+ colour: string

+ predicative: string

+ qualitative: string

+ intensifier: string

+ sentence_modifier: string

+ verb_modifier: string

+ nonCount: string

+ plural: string

+ superlative: string

+ proper: string

+ irreg: string

0..*

Figure 2.9: Schema used for SimpleNLG’s default lexicon. A word has 23 properties
that are associated with it. The meaning of the various properties can be found at
https://github.com/simplenlg

While SimpleNLG, jsRealB, and GF are the largest constituent-based grammar en-
gines, there also exist smaller constituency grammar rule sets built to support the
generation of African languages (isiXhosa, isiZulu, and Runyankore in particular)
[138, 45, 167]. These context-free grammars are limited to three lexical categories:
nouns, verbs, and some prepositions. In the generators that rely on these CGRs,
there has been no consideration for structural and phrasal components.

The only realisation engines that do not use a constituency-based grammar formal-
ism, to the best of our knowledge, are RealPro [153], Lavoie et al.’s system [152],
and OpenCCG8. Instead, the first two systems use MTT and take deep syntactic

8https://github.com/OpenCCG/openccg

41

https://github.com/simplenlg

Table 2.7: List of lexical, phrasal, and structural component types found SimpleNLG,
GF’s RGL, and jsRealB. The list of abbreviations, and examples for each, can be
found in the GF RGL documentation [236, pg295-303], jsRealB documentation, and
SimpleNLG Vers. 4 documentation

Engine Phrasal Lexical Structural
SimpleNLG Canned text, Coordi-

nated Phr., and Phr.
(N. Phr., V. Phr.,
Adj. Phr., Adv. Phr.,
Prep. Phr., and
Sentence-like Phr.)

Word and Inflected
Word

List and Docu-
ment

GF RGL IDet, Numeral,
Card, Quant, Pron,
Subj, PConj, A/A2,
IQuant, Digits, AdN,
Num, Det, Conj,
AdV, V/V2/V3,
IAdv, IP, CAdv, Ord,
CN, Predet, AdA,
PN, N/N2/N3

Phr., Utt, VP, S, Cl,
RS, RCl, RP, VP-
Slash, ClSlash, QCI,
and QS

Text, ListNP,
ListAdj, ListAp,
and ListS

jsRealB DT, NP, AP, AdvP,
VP, PP, CP, S, and
SP

N, A, Pro, D, V, Adv,
P, C, NO, Q, and
Raw/canned text

-

representations (DSyntR) as input to transform them to surface text via modularized
grammar rules. The OpenCCG realiser expects input to be a hybrid logic dependency
form [14] and uses a Combinatory Categorial Grammar (CCG) to transform the in-
put to natural language (e.g., as can be seen in the OSU submission to the Surface
Realization shared task held in 2011 [233]). All these engines conduct no tactical
decisions as they move those responsibilities to the sentence planner.

Since the languages in question are low-resourced, reliance on only a grammar engine
is not feasible. Instead, it must use a mixed-methods engine, similar to how CGRs are
combined with templates by [138, 45] since grammar coverage is likely to be limited.
The question of whether to rely on GF, Java, Python, or C# (à la SimpleNLG or its
variants) comes to the fore when building such an engine. At first glance, GF seems
like the better choice as one can achieve multilingualism through its RGL. However,
such a feature is predicated on the creation of rules for each of the components listed
in Table 2.7. This is not an easy feat for the languages in question due to their
grammatical complexity and lack of up-to-date grammar literature. The existing

42

Table 2.8: An example of meaning presentation captured using production rules in
PHARAOH++ (Source: [289])

QUERY → answer(STATE)
STATE → state(STATE)
STATE → traverse_1(RIV ER)
RIV ER → riverid(RIV ERNAME)
RIV ERNAME → ohio

CGRs [258, 135, 167] do not cover nearly enough of those categories and they cannot
be updated quickly. Consequently, at present, the choice between Java, Python, C#
and GF is moot and can be revisited in the future when there is a mature set of CGRs
with wide coverage.

2.4.1.3 Data-driven models (DD)

Most data-driven systems tend to use an integrated architecture hence have no dedi-
cated surface realisation module. While such systems may have interesting differences
(e.g., some are classification-based [182] while some are planning-based [12]), we will
not analyse them here in this section due to their lack of a realisation component
or something close it. The only exceptions are the systems submitted to the various
(Multilingual) Surface Realisation Shared tasks.

The first wave of data-driven NLG systems relied on, mostly, phrase-based, SMT
techniques. Popular examples are BAGEL [175] and Wong’s [289] use of PHARAOH
(and PHARAOH++) [142] for NLG. In BAGEL, Mairesse et al. [175] use a dynamic
Bayesian network to transform semantic stacks to a sequence of phrases. A semantic
stack is essentially a record that contains a variable name, its value, and a dialogue
act type (e.g., inform(name(Zola))). Their model is also responsible for planning, in
addition to realisation, since it needs to select relevant semantic stacks to be retained
from the input (i.e., content selection). Wong [289] presents two SMT-based mod-
els: PHARAOH and PHARAOH++. PHARAOH is a log-linear reformulation of the
noisy-channel model trained using minimum error rate and whose output ‘transla-
tions’ are obtained via beam search [239]. The difference between PHARAOH and
PHARAOH++ is that the former treats the input meaning-representations as strings
whereas the latter transforms the input into production rules before translation [289].
For instance, the input answer(state(traverse_1(riverid(‘ohio‘)))) is first converted into
the production rules shown in Table 2.8. These types of realisation techniques have
been superseded in popularity by Deep Learning (DL) models.

43

RNN-based (i.e., neural networks with recurrence) and transformer models are the
most popular approaches for converting text plans into text (e.g., [51, 202, 57]).
Both kinds of models use an encoder-decoder architecture, which is demonstrated in
Figure 2.10. When the architecture is used in NLG, it can resemble the work done in
MT where it is popular as well, in that it may take some sequence of words in order
to produce another sequence of words. For instance, it has been used to generate text
from a table (e.g., [161]), an image (e.g., [112]) for image captioning, or text (e.g.,
[247]) but for summarisation or expansion. With that said, most DL NLG models
translate a sequence of text plan tokens to a sequence of natural language words. In
the broader context, it must be noted that these systems can take in a variety of
initial inputs.

The RNN-based models that abide by the encoder-decoder architecture operate by
first converting the input text plan and output natural language text into some chosen
vector representations, often dense, as shown in Figure 2.11. The vectorised text plan
is fed into a Recurrent Neural Network (RNN) in order to generate some encoding
of the input (denoted H in Figure 2.11). The encoded sentence plan and vectorised
target sentence are then used as input into another recurrent neural network that is a
language model (i.e., it predicts the next word given the previous word and vectorised
text plan). When training, the predictions from the decoder are used to compute the
loss and that is propagated backwards to the encoder (i.e., the model is trained end-
to-end). Two special tokens are used to indicate the start and end of each sequence
since the text plan and output sentence may have different lengths. These special
tokens are denoted ⟨s⟩ and ⟨e⟩ in Figure 2.11).

After training, the decoder RNN is then used as a conditioned language model to
generate text. The model is first fed with the ⟨s⟩ token, conditioned on the encoded
sentence plan, in order to generate the first word. Until the decoder produces the
⟨e⟩ token, the previously predicted word is fed into the decoder, conditioned on the
encoded sentence plan. The RNN-based models do not need to operate precisely
as described as there are numerous techniques or design choices that are used to
improve the quality of their output. For instance, one may choose to make use of

EncoderInput
Sequence
 Representation Decoder Output

Sequence

Figure 2.10: Representation of a sequence to sequence architecture

44

Figure 2.11: Representation of a sequence to sequence model that is recurrence-based
when it is converting a sequence of plan tokens (P1, ..., Pn) into natural languages
words (T1, ..., Tn).

greedy decoding instead of nucleus sampling, etc. [110], split the text generation into
multiple and use a separate RNN-based model for each task [251], using a bidirectional
RNN instead of unidirectional one, use a stacked recurrent neural network instead of
a single layer, use Long-Term Short Memory or Gated recurrent units, etc. instead
of a vanilla RNNs. Since the literature on deep learning models is rapidly growing
and such a discussion is not pertinent to surface realisation, we do not attempt to
offer any detailed discussion here and refer interested readers to Narayan and Gardent
[206].

There are also transformer-based models that have been used to map the various
inputs that are given to NLG systems to generate text. The popularity of such mod-
els is influenced by the effectiveness of attention [13], the possibility of speeding up
transformer models [276] via parallel computation, and the prevalence of the pre-
training strategy (e.g., [87]). Such NLG models use variants of the architecture given
in Figure 2.12. When using the original transformer architecture, one creates vector
embeddings for the input tokens, encodes positional information in them without sig-
nificantly degrading the semantic information that is intended to be captured by the
embedding, and then feeds them to the encoder. One then introduces weights that are
dependent on the input/output pairs to scale the input vectors and feeds the result to
a feed forward forwards neural network to generate some normalised representation.
This aforementioned process can be executed multiple times. The encoder’s repre-
sentation of the NLG system’s input is then fed to the decoder. A similar process
is conducted by the decoder, however, its ‘input’ is the sequence of NLG system’s
output tokens. In addition, its first multi-head attention is masked.

We demonstrate the notion of masking by using a segment of the English template
shown Figure 2.7 as a possible output, namely Matthijs de Ligt should leave the field,

45

Figure 2.12: Representation of the original Transformer architecture (Source:
Vaswani et al. [276]).

then the decoder considers the following values:

1. Matthijs MSK MSK MSK MSK MSK
2. Matthijs de MSK MSK MSK MSK
3. Matthijs de Light MSK MSK MSK
4. Matthijs de Light should MSK MSK
5. Matthijs de Light should the MSK
6. Matthijs de Light should the field

In the list above, we use the typewriter font to denote that the listed items are vector
representations of the corresponding tokens and use the shorthand MSK to refer to the

46

representation of the mask. Moreover, since the decoder’s goal is to generate the NLG
system’s output sequence, it produces the probabilities for the different outputs.

The number of systems that follow a neural approach has exploded over the years
and they have explored variations of text-to-text tasks (e.g., style transfer [65, 265,
290, 155, 116], text summarisation [161, 1], question answering [4], and Multiple
Choice Question (MCQ) distractor generation [125]). Even when their input type
is limited to one category (e.g., data), we have also seen a lot of variations in the
input forms. For instance, some data-to-text NLG systems take charts (e.g., [213])
while others accept meaning representations (e.g., [121]). Most neural NLG systems
are not directly relevant to our work because they do not split the generation task
into modules such that there is an identifiable surface realiser. Instead, their encoder
creates a representation of the input and the decoder uses it to generate the final
text.

Stated differently, most of the systems within this category that were created to have
some notion of modularity (e.g., [231, 202, 269, 295]) use the dated architecture that
splits the task into ‘what to say’ and ‘how to say it’ as described in [268, 255]. For
instance, Puduppully, Dong, and Lapata’s [231] approach is to create a text decoder
instead of a surface realiser. They feed the text decoder content plans to produce
text. Overall, their system takes tuples as input, encodes them into vectors using
a multilayer perceptron, and weights them via an attention mechanism. They then
use a bidirectional Long short-term memory (LSTM) to create vector representations
of both the content plan and encoded input. The vectors are fed into the decoder,
a recurrent neural network with LSTM units, and a copy mechanism, to generate
the output. The only DL-based NLG system that uses the contemporary pipelined
architecture, and therefore has an identifiable surface realiser in the usual sense, can
be found in [51]. Most of its modules use the previously discussed methods, i.e, a
RNN-based and transformer models, to create two versions of a model that is faithful
to the tasks described in [68]. However, its surface realiser does not use a neural
network and instead, it is rule based.

The only systems that deviated from that split are the submissions to the Surface
Realisation Shared Tasks. The participating systems focused on the generation of text
from Universal dependency structures [23, 197, 198, 199]. Most of those systems split
surface realisation into two tasks, namely ordering and inflecting lemmas, and use the
described models to achieve the aforementioned tasks. Specifically, the submissions
can be categorised as follows:

47

• Training an SMT model to be used to generate the most likely ordering of
‘grammatical relations’ when given a tree and then iterate the tree in-order to
generate the final text [103].

• Ordering the input tree’s nodes using a classifier and inflect the lemma in each
node using a seq2seq or SMT model (e.g., [232, 52]). Once the a tree whose
child leafs also contain the inflected words, then one can traverse the tree in
order to generate the text.

• Ordering the input tree’s nodes using a seq2seq model and inflecting the lemmas
found in each node using a hash table (e.g., [256])

• Ordering the nodes of the input tree and inflecting the lemmas in each node
using two separate deep learning models, mostly which follow the seq2seq ar-
chitecture (e.g., [16, 80, 292, 272, 111, 185, 251, 293]).

• Uses a single seq2seq model to learn the ordering and inflection of the informa-
tion found in the input’s nodes (e.g., [88, 85]).

• Finetunes and uses a pretrained model to generate text from a dependency tree
(e.g., [257, 89])

Overall, all the data-driven approaches that have been discussed above are not suit-
able for languages or domains where there is no large parallel corpus from which to
train; hence, they have not been employed for generating African languages. When
we look at the sizes of the popular datasets used to build data-driven NLG models,
as listed in Table 2.9, we see that most of them require large amounts of data. Since
the first 5 datasets in the table have less than 1000 items in their training sets, it
may seem reasonable to expect engineers and researchers working with the languages
in question to consider creating similar sized datasets.

The expectation is not reasonable because closer scrutiny of those datasets shows that
either the dataset is still large and the number shown in Table 2.9 is misleading or the
resulting model trained from said data was outperformed by techniques that are not
data-driven. For instance, Yermakov, Drago, and Ziletti’s [291] work shows that they
assume that BioLeaflets is useful when used with a large pre-trained model, hence they
implicitly assume that there exists a larger dataset to train such a model. In addition,
analysis of the results of SemEval-2017 Task 9 shows that the results produced by
the data-driven systems were not good and leading the organisers to conclude that
there is “a long way to go to reach fluency”. In fact, the best performing system,

48

based on human evaluations, is not data-driven — it is the GF-based system called
RIGOTRIO.

Now turning to the shared surface realisation tasks, it may appear that the SR18-ar
and SR18-pt datasets can serve as motivation since in the first multilingual surface
realisation shared task [197], the seq2seq model submitted by Ohio State Univer-
sity performed best for Arabic and a SMT system submitted by Tilburg University
performed best for Portuguese. It may not be wise to invest a lot of money and
effort solely on creating similar sized datasets in the hope that they produce simi-
lar automated metric scores. Especially since the languages in question have richer
morphology than Arabic and Portuguese, automated metrics may not correlate with
human evaluations [243], and the integration of a surface realiser that expects Uni-
versal Dependency structures as input as part of a larger system may not be trivial or
possible in a variety of systems. Lastly, the numbers given in Table 2.9 pertaining to
RotoWire [287] are misleading because they do not make it clear that the summaries
are long documents.

It is unlikely that we are going to see the development of large datasets in NLG
for these languages in the near future. Unlike MT, where authors have combined
religious, government, and phrasebook parallel corpora (e.g., [183, 212]) to build
models of varying quality, it is not sensible to build NLG models without domain-
specific data. Since the languages are low resourced, creating such datasets, even for
a single domain, is not sustainable as it may require a lot of financial investment since
people do not volunteer without financial incentives [216]. At best, one can create
a ‘rule-based system’ whose data is to be used to scaffold existing datasets. In such
a semi-supervised setup, the ‘rule-based system’ captures human crafted knowledge
and its main purpose is to assist the data-driven model. Even in such a set-up, if
we want to create such a system in a principled way then the problem highlighted
in Section 1.5 regarding our lack of a systematic and planned method for associating
templates with CGRs needs to be addressed.

2.4.1.4 Templates and computational grammar rules (GT)

There are approaches that have been created over the years that combine templates
with computational grammar rules in order to introduce some flexibility and linguistic
complexity to templates. Examples of such approaches are patterns [136], syntax tem-
plates [273], YAG’s template specification language [190], XtraGen’s templates [263],

49

Table 2.9: The sizes of some popular corpora used by data-driven NLG systems for
various languages and input types.

Name/Citation Lang. Train Dev Test
BioLeaflets [291] English 1068 134 134
Bio-AMR v0.8 [184] English 5,452 500 500
SR18-ar [197] Arabic 6,016 897 676
Rotowire [287] English 7,633 1,635 1,635
SR18-pt [197] Portuguese 8,325 559 476
SR18-fi [197] Finnish 12,030 1,336 1,525
SR18-nl [197] Dutch 12,318 720 685
SR18-en [197] English 12,375 1,978 2,061
SR18-it [197] Italian 12,796 562 480
SR18-es [197] Spanish 14,289 1,651 1,719
SR18-fr [197] French 14,529 1,473 416
WebNLG [92] English 25,298 - -
LogicNLG [57] English 28,450 4,260 4,305
LDC2016E25 [184] English 36,521 1,368 1,371
E2E [211] English 38,710 4,301 7,590
SR18-rs [197] Russian 48,119 6,441 6,366
SR18-cz [197] Czech 66,485 9,016 9,876
ToTTo [219] English 120 761 7 700 7 700
Perez-Beltrachini and Lapata [220] English 165,324 25,399 23,162
Chisholm, Radford, and Hachey [58] English 401,742 50,017 50,030
WikiBio [154] English 582,657 72,832 72,832

and the extant augmented template specification and engines such as RosaeNLG9 or
CoreNLG10. The aforementioned systems and their associated template extensions
were created for various reasons:

• van Deemter, Theune, and Krahmer [273] created their syntax templates to
support the generation of soccer reports in Dutch.

• Keet and Khumalo [136] created patterns, an ad hoc extension of template, to
support ontology verbalisation in isiZulu

• YAG and XtraGen’s template formalisms were introduced generic solutions to
support a wide number of different domains

• CoreNLG and RosaeNLG are small augmented template engines intended for
small NLG projects and are influenced by template processors for the web

9https://rosaenlg.org
10https://societe-generale.github.io/core-nlg/

50

https://rosaenlg.org
https://societe-generale.github.io/core-nlg/

All these extended templates keep the notion of slots and fixed words, elements they
have inherited from ordinary templates. Some of them use rules to produce the
fixed words instead of placing the words explicity. Unlike ordinary templates, they
introduce additional rules that responsible for a variety of tasks. For instance, they
may be used to attach annotations to words or have a higher function such as text
planning). The complete list of components in each of the template types is given in
Table 2.10.

In the Table 2.10, we introduce our own terminology for some constituents that are
not named by the creators of each template type. The table shows us that Keet and
Khumalo’s [136] patterns have two kinds of slots: a sub-word slot and a template slot.
A sub-word slot forms part of a word, its values are morphemes, and it differs from a
regular slot in that it is not separated by a space from its surrounding constituents.
The patterns also have two types of words: fixed words and changing words. The
changing words have at least one sub-word slot and are obtained by the application
of what we have termed the Share affix rule. This rule indicates that the affix to be
inserted in a sub-word slot shares its noun class with the changing word’s governor.
This functionality allows the pattern to capture the concordial agreement found in
isiZulu. Fixed words are regular natural language words. An example of a pattern
taken from [134], for verbalising part-whole relations in isiZulu, is as follows:
QCallncx,pl Wncx,pl SCncx,pl − CONJ − Pncy

RCncy
−QCncy

− dwa

In the pattern above, the last word (RCncy-QCncy-dwa) is a changing word and it
has a sub-lexical slot for quantitative concords (QCncy). A share affix rule exists
between the first word, the universal quantifier (∀, ‘for all’), and the second word, the
entity that plays the whole (Wncx,pl) in the has-part relation, since the quantifier has
a concord whose noun class depends on the noun that is the whole. In the pattern,
this rule is denoted using the shared subscript (ncx, pl).

YAG’s template specification language only has traditional template slots and three
content types: Word, String, Punctuation. The String type is a fixed string, Word is
a changing word obtained via inflection, and Punctuation is a punctuation mark. It
also has five rules that offer control over choosing the three kinds of content types.
For instance, If chooses a content type if a condition is met, Condition checks multi-
ple conditions and chooses a content type should a any condition be met, Template
inserts the slot-value pairs and returns the ordered content values, Concatenation con-
catenates the result of content to another, and Alternation randomly selects content
from a list thus avoids stale text. Figure 2.13 shows an example of a YAG template,

51

Table 2.10: List of components found in the extended templates. Abbreviations:
Concatenation = concat.

Control Content
Name /
Citation

Annotation Rule Word Morpheme

YAG Complete
list undocu-
mented

Template,
if, Con-
dition,
Concat.

Word,
String,
Punctua-
tion

N/A

Keet and
Khumalo

N/A Share affix Fixed
Word,
Changing
Word

Fixed affix, Slot

van
Deemter
et al.

Topic, Condi-
tion

Attach,
Combine

Fixed
word, Cat-
egory

N/A

XtraGen Simple, Com-
plex, Parame-
ter

Selection Inflect,
String

N/A

CoreNLG nlg_tags,
no_interpret,
post_eval

Concat.,
nlg_syn,
nlg_num

TextVar,
nlg_enum

N/A

RosaeNLG nominal
group dic-
tionaries,
recordSaid,
hasSaid,
deleteSaid,
dumpHas-
Said, get-
DumpHas-
Said, getHas-
SaidCopy

value, *ref
mixin,
agreeAdj,
eachz,
syn_fact,
synz-
syn, syn,
verb, sub-
jectVerb,
thirdPos-
session

String,
itemz-
item,
dictionary

N/A

52

template

clause

process

understand

agent

template

noun-phrase

np-type

PROPER

head

George

gender

MASCULINE

pronomial

YES

object

template

noun-phrase

head

book

pronomial

YES

Figure 2.13: Tree representation of a YAG template (Source: [191])

represented as a tree, that was created to generate the text “He understands it”. The
template has two slots (i.e., agent and object) and they are filled with the values
“George” and “book” respectively, in this instance. The agent’s slot filler is anno-
tated with a grammatical feature (e.g, masculine). It is also annotated with with
“pronominal” so that the template generates the pronoun (i.e., the template is also
responsible for referring expression generation). These slots and the fixed word (i.e.,
“understand”) are organised using the ordering dictated by the ‘clause’ element.

XtraGen’s extended templates only have a traditional template slot (Stenzhorn [263]
calls it the Getter action). There are two main content types: a string and an inflect.
The string type is a fixed string and the inflect type is a changing word produced via
inflection. The extended template also has the selection rule that is responsible for
using existing templates as building blocks in others. Lastly, XtraGen has annotation
features that support the ability to specify when a template is suitable (via Simple
and Complex condition) and add stylistic variation through the Parameter rule.

van Deemter, Theune, and Krahmer’s syntax templates only have traditional template
slots as well. The content types are categories for lexical and phrasal items (e.g.
Nouns, Noun phrases) and fixed words. The categories are combined using what we
call the combine rule and the lexical categories are attached to fixed words via the
attach rule. The lexicon, categories, and slots form what we call the syntax templates.
These are syntax trees where some leaf nodes do not have lexical values but are slots.
The syntax templates also have topic and condition annotations that can be used to
specify the conditions in which the template is appropriate.

CoreNLG is a python-based resource and is one of the smallest augmented template

53

engines. Specifically, it only offers TextVar, a kind of text or canned text, for cap-
turing the phrasal structure of the sentence to be generated. It does not have any
dedicated Lexical element. Instead, it relies on python’s in-built strings. The cur-
rent version of CoreNLG only has the TextClass/Section and Document classes. The
TextClass/Section classes both exist to order sentences and the difference between
them is how the library permits access to certain functionality. Specifically, when
using TextClass then NlgTools methods are accessed with python self reference. When
using Section, the NlgTools methods are accessed using aliases11. For instance, one
can use the add_tag method instead of nlg_tags. We demonstrate how to capture
the English template listed in Figure 2.7 using CoreNLG in Listing 2.2 and explain
it afterwards:

Listing 2.2: CoreNLG template for generating English soccer text using the CoreNLG
engine

1 nlg = NlgTools()
2 infractions = {
3 "Matthijs de Ligt": 10,
4 "Georginio Wijnaldum": 15
5 }
6 for infract_key in infractions.keys():
7 text = TextVar(
8 infract_key,
9 "should leave the field after",

10 infractions[infract_key],
11 "minutes with a red card after he committed a foul."
12)
13

14 text = nlg.write_text(text)
15 print (text)

The snippet shown in Listing 2.2 starts by initialising a NlgTools object; this allows
CoreNLG to resolve language specific rules for contractions and typographical con-
ventions. In the above snippet, we introduce mock data in lines 2-5, similar to lines
1-3 in the Java snippet presented in Section 2.4.1.2. We then iterate over the in-
fraction data, order them using TextVar in lines 6-12. The write_text method in line
14 is then used to handle all post processing. Linguistic rules can be added to the
above snippet. For instance, we can a synonym rule to obtain the template shown in
Listing 2.3, explained afterwards.

11https://societe-generale.github.io/core-nlg/docs/framework/section/

54

https://societe-generale.github.io/core-nlg/docs/framework/section/

Listing 2.3: CoreNLG template that includes a synonymy rule for generating English
soccer text using the CoreNLG engine

1 nlg = NlgTools(lang='en')
2 infractions = {
3 "Matthijs de Ligt": 10,
4 "Georginio Wijnaldum": 15
5 }
6 for infract_key in infractions.keys():
7 text = TextVar(
8 infract_key,
9 "should leave the field after",

10 infractions[infract_key],
11 "minutes with a red card after",
12 nlg.nlg_syn("he committed", "their actions resulted in",

mode="random"),
13 "a foul."
14)
15

16 text = nlg.write_text(text)
17 print (text)

Listing 2.3 shows that the portion that of the template is in line 12. We have intro-
duced synonymic phrases via the nlg_syn and the value to be used when linearising
the template is chosen at random. The rules enables the generation of text that may
either end with “...after he committed a foul” or “..after their actions results in a
foul”.

RosaeNLG differs from CoreNLG in that it includes a number of linguistic functions
for enriching templates that do not exist as part and parcel of the templates but
are external resources. The template structure can be captured via pug’s12 plain
text, variables, and interpolation. It also offers verbs, possessives, and adjectives
as lexical types via the language specific dictionaries. It also offers in-built linguistic
functionality for capturing synonym via syn mixins13, synz-syn structures, and syn_fct
functions. At the time of writing, its lexicon covers America English, French, German,
Italian, Spanish. Other functionality it offers pertains to control structures such as
loops (e.g., eachz). For instance, we demonstrate how to capture the English template
from Figure 2.7 and include a synonymy rule, similar to the CoreNLG template given
in Listing 2.3. The resulting RosaeNLG template is shown in Listing 2.4.1.4 and we
explain it afterwards.

12https://pugjs.org/
13A term that comes from pug to refer to functional-like reusable blocks of code

55

https://pugjs.org/

1 p
2 #{redplayername}
3 | should leave the field after
4 #{minutes}
5 | minutes with a red card after
6 |
7 synz {mode: 'once'}
8 syn
9 | their actions resulted in

10 syn
11 | he committed
12 | a foul.

The snippet shown in Listing 2.4.1.4 generates texts that may either end with “...after
he committed a foul” or “..after their actions results in a foul” similar to the CoreNLG
snippet. In line 1 of Listing 2.4.1.4, we indicate that we are going to be generating
plain text. This feature of RosaeNLG is carried over from the Pug templating engine.
The above snippet also presents fixed segments in lines 3, 5, and 12. Its synonymic
rule is captured via a synz-syn structure in lines 7-11.

This category of approaches (i.e., templates that use CGRs) is promising for isiXhosa
and isiZulu, the languages that are the focus of this thesis. However, there is a
need to consider what are the appropriate template components and how they must
be combined. Currently, the discussed approaches treat the template as an isolated
entity and their additions or extensions only exist alongside templates even though
they are housed in a single file. In particular, a template is still a sequence of fixed
words and slots. It may make use of control structures that are housed in the same
file (e.g., synz-syn structures in the case of RosaeNLG). The manner in which the
templates are paired with linguistic rules does not appear to be planned. There is a
need to be deliberate regarding the type of pairing relations that are to be supported.
Such deliberation might allow use to accurately assess each template type’s novelty,
verify the template’s consistency, achieve interoperability, or be able to systematically
examine each template’s suitability for different languages.

2.4.1.5 Data-driven models and grammar rules (DDG)

When data-driven models are used together with grammar rules for text generation
then the models are either used for ranking candidate outputs, probabilistic rule
selection, morphological inflection, or word/lemma ordering.

More precisely, most methods that combine data-driven models and grammar rules
use a framework with two modules: the first component is a base generator that

56

produces candidates and the second component is a selector/filter component. The
main difference between the various methods is the choice of grammar formalism used
by the candidate text generator and the method used for selecting the output from
the candidates. For instance, White et al. [285] use a CCG and a chart generation
algorithm to produce candidate sentences that are then ranked using an n-gram lan-
guage model. Nakanishi et al. [205] use the Head-driven phrase structure grammar
formalism and rank the candidate sentences using a bigram/syntax model. To the
best of our knowledge, this generation framework was popularized in NLG by Knight
and Hatzivassiloglou, Langkilde [140, 148].

In WASP−1 [289] and pCRU [20, 21], unlike the previous category of systems, the
grammar is not used by a separate module to generate candidates that are then ranked
by the statistical model. Instead, the grammar is used to build the statistical model
thereby creating a bisecting architecture. The grammar can be created by hand (e.g.,
[20, 21]) or induced algorithmically (e.g., [289]). For WASP−1, Wong uses a log-linear
reformulation of the noisy channel model, and an Earley chart generator for decoding
(see [289] for more details). The computational grammar is used for creating the
WASP−1 translation model [289, p97]. For pCRU, Belz manually creates a Context
Free Grammar (CFG) and then uses it to build a syntax-based language model via
standard maximum likelihood estimation and add-1 smoothing. The model is then
used to generate text via viterbi, greedy, or greedy roulette-wheel generation.

Another approach for combining data-driven methods and grammar rules can be seen
in the English Treex/TectoMT surface realiser [83]. It makes use of the multilayer
Functional Generative Description (FGD) linguistic theory and relies on hand-coded
English grammar rules and a statistical model to transform each layer’s representation
to the next until one obtains a tree whose child nodes are well-formed English words.
This realiser is similar to SimpleNLG in that the rules for combining words and
phrases (i.e., the syntax rules) and the lexicon for defining categories and attributes
are hand-coded. However, unlike SimpleNLG, the realiser uses its statistical model, a
LIBLINEAR logistic regression classifier, for determining the morphological inflection
of words. Kovács et al.’s [145] and Recski et al.’s [237] submissions to the Multilingual
Surface Realisation Shared Tasks also follow this approach. However, they make use
of Interpreted Regular Tree Grammar (IRTG) for capturing their grammar and use
a seq2seq model, with attention, to inflect their lemmas.

The last category of DDG systems use the data-driven models for determing the
correct order of the lemmas which are then fed into a grammar that is responsible for

57

inflecting them in order to obtain the final strings. For instance, Madsack et al.’s [164]
submission to the 2018 Multilingual Surface Realisation Shared Task orders lemmas
and their morphological features using (1) a seq2seq model with bidirectional Gated
recurrent unit (GRU) units or (2) a two-layer neural network that expects two words
as input. After ordering, they then use a proprietary grammar engine [281] to inflect
of the lemmas to get a tree with well-ordered and inflected words.

The data-intensive nature of all these approaches disqualifies them, for the time-being
or in the near future because of a lack of parallel corpus for the languages this thesis
focuses on.

2.4.1.6 Data-driven models and templates (DDT)

Most methods that combine templates and data-driven approaches do so by making
use of data-driven techniques to create candidate templates and then also using said
techniques to select the best template, out of the candidates, when given some input
for which the system is to generate text. Some only focus on a subset of the text
generation tasks, e.g., the generation of only templates instead of the final text. For
instance, Howald et al. [115] and Kondadadi et al. [143] extract templates from
raw text using semi-automated methods that rely on the k-means clustering of text
based on its semantic content. Once the templates are created, a suitable template
for a given input is selected using a ranking algorithm in order to generate text.
The process followed by that work to create the assets to be for text generation is
shown in Figure 2.14. The authors start by splitting documents into sentences. They
then identify named entities and semantic predicates using use the Boxer semantic
analyser and custom and proprietary14 name entity recognisers. Templates are then
created by placing slots in the positions where the relevant named entities are found
in the extracted documents. The templates are then grouped using k-means and the
extracted semantic predicates to obtain template clusters that have similar commu-
nicative goals. When generating text, the algorithm first identifies the most relevant
cluster and then uses an n-gram model to rank the cluster’s templates.

Similarly, Angeli et al. [10] extract templates from raw text and these candidate
templates are filtered using a data-driven model when generating text. They start by
creating high-level categorisations of the input to be generated. For instance, in the
case of the WeatherGov corpus, they identify inputs that pertain to the temperature,
wind, sky cover, and rain. The granularity of these categories is based on the dataset.

1415

58

Entity

tagging

Semantic

analysis Statistic collection

and clustering
Feature extraction
and model creation

templates

predicates
enriched

template

corpus

Corpus
Model

Figure 2.14: Representation of the process followed by Kondadadi et al. [143] to
create their text generation assets (Adapted from [143])

Table 2.11: A collection of MRs that are aligned with text (Source: [10])

skyCover temperature
mode = 50− 75 time = 17− 30 min = 44 mean = 49
mostly cloudy, with a low around 45 .

For instance, they segment the wind category into windDir and gust. When learning
templates, they align the category (what they refer to as record) and its associated
values (what they call fields) with the text. For instance, when given the input
{skyCover(mode = 50 − 75), temperature(time = 17 − 30, min = 44, mean = 49)}
and the text “mostly cloudy, with a low around 45.” they produce the alignment
shown in Table 2.11. One the input the input is aligned with the text, the Meaning
Representation (MR)’s variables are used to replace the text. For instance, the phrase
“low around” is replaced with the variable time. They then use this dataset to learn
a log-linear model to be used to select the most likely template for each meaning
representation16.

A different approach is followed by Wiseman et al. [288] in their combination of
templates and data-driven methods. Unlike Howald et al., Kondadadi et al., and
Angeli et al. [115, 143, 10], they combine them in a joint model that learns/extracts
templates and selects the appropriate template when generating text. Specifically,
they make use of a encoder-decoder approach. However, their decoder is an extended
hidden semi-Markov hidden model. After training, they use beam search to generate
text in a “template-like way” [288]. The work done by Kale and Rastogi [123] is
similar to this but they use a transformer to generate the templates.

Similar to the previous categories, these approaches are appropriate for the time-being
or in the near future.

16Technically, the chain multiple log-linear models since the input contains multiple MRs

59

2.4.2 Summary

Of the discussed methods for surface realisation, templates are not appropriate for
isiZulu and isiXhosa, unless the text to be generated is carefully designed to avoid
grammatical agreement. For instance, instead generating the isiZulu text amandla
womoya azokwehla ngokuhamba kwesikhathi ‘wind speed will decrease over time’ in
a weather forecast NLG system, one could simple generate the text amandla wom-
oya: kuhla ekuhambeni kwesikathi ‘wind speed: decrease over time’. The underlined
portion of the alternative text does not include a marker of what is being referred to
hence is slightly awkward. Technically, this can be solved through the use of images
next to the text in the case of a weather forecast NLG system. In general, crafting
such text is a difficult feat that may result in awkward phrasing that goes against
the communicative goals, especially where is not possible to include images as sup-
porting material. The data-intensive approaches are not appropriate as a reusable
solution, even when used in combination with grammar-rules or templates, because
the languages in question are low-resourced. Unlike MT where some authors have
relied on government, religious, or phrasebook corpora (e.g., [183, 212]), one cannot
reasonably make a case for the use of datasets that are not domain-relevant in NLG.
One could create a corpus by aggregating existing ones (à la AfroMT’s isiZulu and
isiXhosa corpora [240]) and enriching it with some input type (e.g., RDF triples,
abstract meaning representations, etc.) to obtain a corpus of a similar size to the
ones shown in Figure 2.9. Even if it were possible to train an NLG model on such a
corpus, one cannot expect such a model to generate sensible text, say, in a restaurant
use case since a significant portion of the existing corpora for isiZulu and isiXhosa
is sourced from bibles, technical documents (e.g., ubuntu localisation files), and etc.
Building NLG datasets from scratch for every new domain being tackled, to deploy a
data-driven model, is not sustainable. Especially considering that existing work has
shown that speakers of some of these languages do not participate in crowd-sourcing
efforts unless there are financial incentives [216].

The only viable method reusable across different domains are templates that are
combined with computational grammar rules. There are a number of existing pro-
gramming languages, template specifications, and tools that can be used to obtain
such augmented templates. For instance, one can make use of SimpleNLG or GF, or
smaller tools such as CoreNLG and RosaeNLG, to generate English text (and sup-
port for other languages is possible). We now start by looking at the use of GF as
a primary candidate; its RGL offers linguistic functions for 38 languages, hence it

60

seems sensible to use the language and its associated tools. However, its coverage for
African languages is still minuscule [207, 229, 181] hence GF cannot be useful on its
own. Similarly, while SimpleNLG was first built for English, there are variations for
a number of European languages and Tibetan. It may seem like a second alternative
is to build a Southern African variation of SimpleNLG. This is also not possible since
building a grammar engine or resource grammar with wide coverage for the languages
in question in order to obtain augmented templates is not trivial since the languages
are under-resourced. A sensible strategy for the languages is to incrementally build
a grammar engine by focusing on functions in the same fashion as Abed and Reiter
[2]. In addition, the strategy would also make it possible to augment the limited
grammar engine with linguistic rules that are not general enough to warrant their
inclusion in the engine. Specifically, it would allow the combination of templates and
domain-specific grammar rules in one entity as seen in ‘patterns’ [43, 135], the only
approach that has been demonstrated to support African languages.

Patterns, a type of augmented templates, have wide domain applicability since their
constituents should, theoretically, be able to support all domains. Practically, the
existing ones [43, 135] are ad hoc, thus would have to be adjusted to be usable in
another application domain that differs significantly from the ones they already sup-
port with respect to linguistic features. For instance, the original constituents in
the isiZulu patterns [133] had to be amended with the possessive concord and loca-
tive affixes to support part-whole relations [134]. As a result, there is still a need
to develop templates with sub-lexical components, with specific support for morpho-
logically rich and agglutinating languages that can support any domain. Moreover,
there is a gap to consider the use approaches that pair the artefacts while prioritising
template scaffolding and CGR reuse instead of a specific domain’s peculiarities. If
the templates and grammar rules are viewed as separate entities, this opens oppor-
tunities for template specifications that support interoperability in template-based
systems.

The CGRs used by these patterns are limited, as are the existing CGRs of other
African languages (e.g., [15, 167, 207]); hence; the CGRs that are to be created must
be used together with the templates. However, since the languages differ significantly
from English (and other Indo-European languages) and their rules are to be used
with templates since they are limited, it is inappropriate to adapt SimpleNLG and
related tools for the languages. Instead, one should create a new grammar engine that
exists in its own right and not constrained by the grammatical features found in an

61

engine that supports a language from a different family. For instance, if SimpleNLG’s
Application Programming Interface (API) were used, then phonological conditioning
rules would not be prioritised despite their importance for word formation. The
resulting engine could be adapted to GF, SimpleNLG, or related packages in the
future, should the need arise, similar to Abed and Reiter’s approach [2].

62

Chapter 3

Grammar-infused templates:
combining template and grammar
rules

In the previous chapter, we demonstrated that templates are not suitable for the
languages in question when they are not combined with Computational Grammar
Rules (CGRs). The combination of templates with grammar rules, leading to what is
sometimes called augmented template systems, is promising as a solution for Nguni
languages. However, the existing augmented templates systems have not been delib-
erate regarding how that pairing is done, hence may lead to systems that are hard to
reuse and maintain.

The main aim of this chapter is to provide a formal definition of templates that
are paired with CGRs. Henceforth, we shall call such templates grammar-infused
templates. Such templates are key in broadening the languages supported within the
Natural Language Generation (NLG) research community via the inclusion of Nguni
languages.

Section 3.1 will demonstrate gaps in augmented templates systems, Section 3.2 will fo-
cus on understanding the possible ways of combining templates and CGRs, Section 3.4
presents the families of grammar-infused templates based on the supported relation-
ships, Section 3.5 discusses how these pairings manifest themselves in the various
existing grammar-infused templates, and Section 3.7 concludes with a demonstration
the usefulness of the classified templates.

The work presented in this chapter was published in the International Journal of
Metadata, Semantics and Ontologies [166]. It has been updated to improve its clarify

63

and readability. In particular, we added examples in Section 3.2.1, clarified how the
features used in Table 3.2’s categorisation were chosen, and reorganised Section 3.4
by separating the conditions that must be met for a set grammar-infused templates to
belong to each class from the example of classifying a collection using the templates
listed in Listing 3.6.

3.1 Gaps in existing augmented templates
To demonstrate the existing gaps with respect to the underlying models of augmented
templates, we now turn to use the example of verbalising ontologies that capture
knowledge about African animals.

In the previous chapters, we demonstrated that templates are not suitable for gener-
ating Nguni languages. In fact, this limitation stretches beyond Nguni languages and
also affects other Niger-Congo B (NCB) languages. One of the limitations for tem-
plates is that they can produce texts with grammatical errors in cases when agreement
is necessary.

In languages with limited grammatical complexity, unlike Nguni languages, one can
solve this limitation through the introduction of certain phrase construction. In order
to demonstrate their approach, consider the following template:
A [slot1] is a [slot2]

When used to verbalise the axiom SubClassOf(Impala Animal) we obtain the text “A
impala is a animal” instead of the correct form “An impala is an animal”. This
problem can be resolved by using “a(n)” instead of either “a” or “an” (e.g., [118]).
This amounts to hard coding all the possible values of some word, instead of relying on
a CGR. This is not a practical solution for Nguni languages since agreement is mainly
captured via concords and we have demonstrated in Section 2.1 that there numerous
types of these concords, each category has numerous values, and listing them in a
word without applying the necessary grammatical processes may be confusing. For
instance, when using the aforementioned strategy for isiXhosa, the first two words
of Byamugisha’s [42, pg94] isiXhosa template for verbalising the axiom Sheep ⊑ ∀
eats.Grass would be (u/ba/i/li/a/si/zi/lu/bu/ku)onke iigusha instead of zonke iigusha
‘All sheep’.

People who are familiar with the augmented template-based systems discussed in Sec-
tion 2.4.1.4 will recognise that the above issue can be solved by such systems, even if

64

one is not clear regarding their internal processing. When generating determiners us-
ing RosaeNLG, for instance, one has to use the value mixin which is integrated as part
of the engine. As such, its processing is handled by RosaeNLG’s ValueManager and
the various language specific managers (e.g., PossessiveManager and GenderNumber-
Manager). To demonstrate, consider the following template segment and the output
in generates. We will explain it afterwards.

Template : #[+value(‘apple’, det:‘INDEFINITE’, adj:‘big’)]
Output : a big apple.

In the above example, the template invokes the value mixin1 and specifies the deter-
miner key with a value of INDEFINITE (other options are DEFINITE, DEMONSTRA-
TIVE, and POSSESSIVE). The above RosaeNLG template segment solves the issue
regarding obtaining the indefinite determiner. This is achieved through the use of
rules that are not found within the template. While such augmented template tools
solve the aforementioned problem, the way they combine templates and rules is not
planned.

To demonstrate the lack of planning, and its consequences, as observed in a tool
like RosaeNLG, consider the following example: the tool can be used to capture
synonymy in templates. However, unlike the case of the indefinite determiner, when
capturing synonymy rules using the synz-syn structure2, the linguistic rules are located
in the serialised template and the engine is only responsible for using and applying
the declared control features and structures. This can be observed in the following
snippet that will be explained afterwards:

Listing 3.1: RosaeNLG template Snippet capturing synonymy
1 p
2 synz {mode: 'once'}
3 syn
4 | first alternative
5 syn
6 | second alternative
7 syn
8 | third alternative

When capturing synonymy in the manner described in Listing 3.1, one must note that
RosaeNLG does not have a separate function, or any knowledge, that specifies that
there exists a synonymic relationship between the first, second, and third alternative
(lines 4, 6, and 8). That knowledge is only captured in the synz-syn structure found

1https://rosaenlg.org/rosaenlg/3.2.1/mixins$_$ref/value.html
2https://rosaenlg.org/rosaenlg/3.2.1/mixins$_$ref/synonyms.html

65

https://rosaenlg.org/rosaenlg/3.2.1/mixins$_$ref/value.html
https://rosaenlg.org/rosaenlg/3.2.1/mixins$_$ref/synonyms.html

in the template. The engine’s role is to select the appropriate linearisation and it will
do so while avoiding to repeatedly select the same string since the once mode (line 2)
is specified.

The decision to make the synonymy rules a part of the template vs. the approach of
separating the rules from the templates as was seen for the determiners may suffice for
RosaeNLG. In general, however, the problem is that there is no clear criteria for how
that decision is made. In addition, there is no formal model we can use to properly
distinguish between the two types of pairings. In the case of Nguni languages, the
combination of templates with CGRs means that one has the benefit of using a simple
technique such as templates and also deal with linguistic complexity when either the
need or the desire for improved quality arises. In such a combination of resources,
the nature of the pairing between templates and CGRs becomes relevant, especially
for low-resourced languages where re-use of the scant CGRs is an imperative. It is
then important to understand the possible ways of combining templates and CGRs
and how they manifest themselves in the various existing systems that use templates
in conjunction with CGRs.

3.2 Pairing relationships
In the following subsections we introduce the model, focusing on two relations, and for-
mally define the two relations (namely, embedding and attachment). We also present
the different kinds of grammar-infused template families that exist based on sup-
port for the various combinations of the two aforementioned relations (and their
sub-relations), and illustrate how a collection of grammar-infused templates can be
determined as belonging to each family.

3.2.1 Relationships

We propose a model that has two relationships, attachment and embedding, that
exist between simple templates and CGRs, as depicted in Figure 3.1.

The attachment relation can be differentiated into two, compulsory and partial at-
tachment, based on mode of participation. In order to formally define these relations,
we first define simple templates and introduce our notation for CGRs. A simple
template is define as follows:

Definition 3.2.1 (Simple template) A bare, or traditional, template is a triple
⟨L, fo, fs⟩, where:

66

Grammar
Grammar

Embedding
Attachment Templates

Figure 3.1: Grammar-infused templates where templates are paired with CGR sets
through two kinds of relationships; attachment and embedding. The bidirectional ar-
row between the template and embedded CGRs denotes their co-dependent existence
(embedding) whereas unidirectional arrow denotes independent existence (attach-
ment).

– L = W ∪S ∪A is the template lexicon where S is the non-empty set of slot names,
W is the non-empty set of words and meaningful word fragments from the natural
language, and A is the set of the language’s word separators/dividers;

– fo : L → Ln is the template’s lexicon ordering function whose output has at least
one slot and one word hence the number of lexical items in the template is n ≥ 2;

– fs is a slot substitution function such that fs : W × S → {0, 1} outputs whether a
word w is allowed to be used to fill a slot s. All words evaluating to true/1 for at
least one s are assigned to some subset Xs ⊂ W .

We now turn to give examples of template lexicon, ordering function, and slot substi-
tution function. Continuing to use the template introduced at the beginning of this
chapter A [slot1] is a [slot2] for illustrating the template lexicon: the first,
third, and fourth ‘words’ are elements of W, the second and fifth ‘words’ are elements
of S, and the five ‘words’ are separated by a single white-space which is an element
of A. Continuing with our illustrative template A [slot1] is a [slot2] to demon-
strate a template lexicon ordering function; we can create a function that takes the
input { a, [slot2], A, [slot1], is, ws1} where ws1 denotes white-space of length 1,
and then outputs the ordered list (A, ws1, [slot1], ws1, is, ws1, a, ws1, [slot2]).
Lastly, for our illustrative template, to demonstrate our notion of a slot substitution
function: applications of the function f(lexA, [slot1]) and f(lexB, [slot2]) would re-
turn true/1 for any string lexA and lexB should they be lexicalisations of concepts
A and B that participate in the relation SubClassOf(A B). Hence, the application
f(dog, [slot1]) will return false/1 if the input is not an axiom where SubClassOf(dog
B) for some concept B.

67

Simple templates have minimal and implicit linguistic rules to which they must ad-
here. Their rules pertain to the order of words through fo, and other rules pertain
to the semantics of each slot through fs. More complex templates need to associate
additional rules that exclude the rules for ordering the lexical items. Hence, in order
to define such rules precisely, we need to define a collection of all lexical ordering
functions for any given language.

Definition 3.2.2 (Ordering functions) Given a language l and the set of all pos-
sible simple templates T , we define the set of all ordering functions for language l as
Fl =

∞∪
i=1
{foi
} where (X, foi

, fs) ∈ T for some template lexicon X and slot substitution
function fs. This is the set of all the language’s lexicon ordering functions as used by
the simple templates.

We then define the CGRs that can be associated with simple templates in order to
form what we call grammar-infused templates, as follows:

Definition 3.2.3 (Associable grammar rules) Let Γ be the set of all computa-
tional grammar rules of a natural language l, then ∆ is the set of CGRs associable
with simple templates in order to form grammar-infused templates and meets the
following conditions:

– ∆ ̸= ∅;

– ∆ ⊆ Γ \ Fl.

For illustrative purposes, a member of the set defined above is the English noun
pluralisation function plrz that accepts a noun and its number to produce the plural
form. The application plrz(movie, plural) returns the string movies and plrz(cherry)
returns cherries. Other linguistic functions that belong to this set take different kinds
of inputs, return strings which may be phrases, words or sub-word elements, and none
of these functions are responsible for ordering lexical items. In the above definition, it
suffices for our purposes to think of CGRs as functions that operate on words and their
features (e.g., morphological features) to obtain words, phrases, and sentences. As
such, it is possible that they break down a word or change some underlying morpheme
to create another word. This definition is sufficiently generic to accommodate all
the different extant formalisms that can be used to formalise a natural language’s
grammar. For instance, Meaning-text Theory (MTT) and Grammatical Framework
(GF) use different internal structures. MTT is based on dependency-based structures
and GF is based on constituency-based structures, but can be both viewed as a

68

collection of functions that operate on words and their features despite the differences
in their underlying structures.

Simple templates and associable grammar rules can be associated together to form
grammar-infused templates. We define the primary relations for combining the two
assets as follows:

Definition 3.2.4 (Attachment and embedding) Embedding and attachment are
the relations denoted by the relations embedded, attached respectively. Given a set of
simple templates T that uses the associable CGRs ∆ of size k > 0 then:

– A CGR g ∈ ∆ is embedded in a template t ∈ T , denoted embedded(t, g), through
the relation embedded= {(t, g) ∈ T ×∆ | t = ∅ ⇐⇒ g = id} where id denotes the
identity function;

– A CGRs g ⊆ ∆ is attached to a template t ∈ T , denoted attached(t, g), through the
relation attached = {(t, g) ∈ T ×∆ | t = ∅ ≠⇒ g = id}.

In the above definition, we equate the template, a triple, to the empty set and
that is an overloading of notation. We use such notation because it is possible
to have a set-theoretic treatment to tuples following Kuratowski [147, p42]. For
instance, one can define an ordered triple in the following manner ⟨L, fo, fs⟩ :=
⟨⟨L, fo⟩, fs⟩ := {{{l}, {L, fo}}}, {{{{l}, {L, fo}}}, fs}}. To demonstrate the purpose
of embedding relation, consider the template t = A [slot1] is a [slot2] (short-
hand for the entire triple) and a function synPhrase(template, phrase) for resolving
the synonymic version of any/some phrase that is intrinsically linked with the tem-
plate. If the two elements are related to each other via embedded(t, synPhrase)
then once t is deleted then the linguistic information encoded by synPhrase also
does not exist. Specifically, synPhrase = id; hence when it is applied to a word
or phrase in the context of a template then returns the word/phrase unchanged
(i.e., synPhrase(t, phrase) = id(t, phrase) := phrase). We now turn to discuss the
attachment relation introduced in Definition 3.2.4. The relation is similar to embed-
ding in that it relates a template and an associable grammar rule. Unlike embedding,
however, it captures the notion of independent existence. For instance, given the
previously introduced illustrative template t and function synPhrase, then when the
template t is deleted then it is not necessarily the case that the function synPhrase

loses all the linguistic information it encoded (i.e., synPhrase ̸= id); hence the func-
tion synPhrase continues to exist.

69

In definition 3.2.4, embedding specifies an existential dependence between a template
and a CGR; hence, deletion of the template results in the loss of the grammar rule.
When a CGR is lost in this manner, the function that encoded it becomes the identity
function hence only returns the input it is given as opposed to applying any language
specific rule. The embedding relation gives template creators the ability to scaffold
simple templates. Attachment specifies an independent existence between a set of
templates and a set of CGRs and there are two forms of the relations: partial and
compulsory. The attachment relation supports the re-use of CGRs. The above def-
initions focus on a single template and CGR. We extend the relations to cover sets
instead of singular templates and grammar rules. Specifically, in order to create the
notions of partial and complete attachment of rules to a template, or set of templates,
we create the following two relations:

Definition 3.2.5 (Partial and compulsory attachment) Compulsory attachment
and partial attachment are the relations denoted by comp_attached part_attached, re-
spectively. Given a set of simple templates T then:

– The set of CGRs G1 ⊆ ∆ is compulsory attached to the set of templates T , denoted
comp_attached(T, G1), through the relation comp_attached = {(T, G1) ∈ 2T ×
2∆ | ∀t ∈ T ∃g ∈ G1 attached(t, g) ∧ ∀h ∈ G1 ∃u ∈ T attached(u, h)}. ;

– The set of CGRs G1 ⊆ ∆ is partially attached to the set of templates T1 ⊆ T ,
denoted part_attached(T, G1), through the relation part_attached= {(T, G1) ∈ 2T ×
2∆ | ∃S1, S2 ⊂ T (T = S1 ∪ S2 ∧ comp_attached (S2, G1) ∧ ¬attached (S1, G1))}.

We continue to use our illustrative template to demonstrate the relations in Defini-
tion 3.2.5. Given our illustrative template and others related to it (i.e., belong to the
set of of all simple templates, hence all belong to T) and a set of grammar rules in
the same fashion as synPhrase that the belong to ∆, that are collectively referred
to as G. Then if comp_attached(T, G) then it is not the case that every rule found
in G might not exist when the templates in T are deleted. In other words, there is
no existential relationship between the templates and rules. To demonstrate partial
attachment relation, consider our illustrative template and related templates, collec-
tively referred to as T and a collection of grammar rules related to, and possibly
including synPhrase, collectively referred to as G. If part_attached(T, G) then if
one where to delete every template T then a portion of the grammar rules in G will
cease to exist since their life-cycle is tied to the templates or some of those templates
did not make use of the rules.

70

In definition 3.2.5, we introduce specialisations of the the attachment relation in order
to differentiate between CGRs used by all templates vs. a subset of templates. In
particular, a CGR set is compulsorily attached if every template must use at least
one rule from it and every rule is used by at least one template. A CGR set is
partially attached to a set of templates if some templates do not have any attached
CGRs.

3.3 Demonstration of relationships
We now turn to the illustration of the relations introduced in the previous section.
Specifically, we do so by using the templates from three existing verbalisers designed
by [100, 264, 72]. The Latvian verbaliser [100] illustrates embedding well: it makes
use of CGRs that capture synonymy for some words and these rules are captured
using regular expressions, for instance it uses the following template for class sub-
sumption:

Listing 3.2: Latvian template for parsing and verbalising subsumption captured using
GF
(Ikviens|Katrs) [slot1] ir [slot2]

The above template was created to parse or generate texts of the form Ikviens pro-
fesors ir pasniedzējs or Katrs profesors ir pasniedzējs ‘Every professor is a teacher’
to/from OWL axioms of the form SubClassOf(Professor Teacher). The first word in
Listing 6.2.3.1 can have one of two variations (i.e., they are synonymic). The words’
synonymic relationship is captured via GF’s vertical bar operator. Using RosaeNLG’s
template specification, it takes the form shown in Listing 3.3.

Listing 3.3: Latvian template for verbalising subsumption captured using RosaeNLG
1 p
2 synz {mode: 'once'}
3 syn
4 | Ikviens
5 syn
6 | Katrs
7 | #{slot1}
8 | ir
9 | #{slot2}

In the RosaeNLG template given in Listing 3.3, the synonymic relationship between
Katrs and Ikviens is captured via a synz-syn structure (lines 3-6). In both forms of
the templates, the grammar rule capturing a synonymic relation is embedded in the
template. In other words, if one were to delete the template file then this instance

71

of the grammar rule will no longer exist. The resolution of the values to be inserted
into slot1 (line 7) and slot 2 (line 9) would then be processed via JavaScript (with
the help of a library that can parse OWL ontologies). The chosen lexicalisation of
the concepts that participate in the SubClassOf relation would then be inserted into
their corresponding slot by RosaeNLG’s template engine. If templates would require
the processing of certain linguistic rules then RosaeNLG (Version 3.2.1) would not
suffice for Latvian, or any Nguni language, because their template processing engine
only supports American English, French, German, Italian, and Spanish for certain
grammar rules (e.g., verb conjugation).

Compulsory attachment can be observed in the BeInformed verbaliser [98, 72]: all
its templates require syntax rules from GF’s Resource Grammar Library (RGL) that
persist even when the templates are deleted. The verbaliser was created for generat-
ing textual specifications of pre and post conditions for business processes that are
captured using a specialised meta-model [98] inside the BeInformed platform3. For
instance, consider the following business rule:

• An intake activity requires the submission of form

The above business rule is captured via the axiom requiresAvailable (Intake Submis-
sionForm) in Davis et al. [72]. For this rule, a grammar-infused template has been
used to generate the English text “The intake may be completed, if the submission
form is available”. To demonstrate how the verbalisation is conducted via the function
(i.e., grammar-infused template) and determine the relationship between the associ-
ated linguistic rules and underlying template, consider the following partial snippet
in Lising 3.4.

Listing 3.4: Snippet of the GF template used to verbalise models in the BeInformed
verbaliser

1 oper
2 intake_N = mkN "intake";
3 submission_N = mkN "submission";
4 form_N = mkN "form";
5 available_A = mkA "available";
6
7 fun
8 requires_available : Activity -> Artifact -> Fragment;
9 requires_available ac ar = mkFragm ac.subj ac.vp (mkS

10 (mkCl ar
11 (mkVP available_A)));

3https://www.beinformed.com/

72

https://www.beinformed.com/

The given grammar-infused template (lines 8 and 9) in Listing 3.4 takes an activity
assigned to the variable ac (e.g., Intake) and the required artefact assigned to the
variable ar (SubmissionForm). It uses GF’s functions mkS, mkCl, and mkVP for order-
ing the items of the template (recall the ordering function in Definition 3.2.1). The
grammar-infused template also makes use of the functions mkN and mkA, for instance,
that apply the necessary inflections to nouns and adjectives. The mkA function makes
it possible for the templates to produce “available” and “availability”, depending on
the context. The linguistic rules associated with those functions are not explicitly de-
fined within the template. Instead, they are defined in GF’s RGL; hence the deletion
of the template will not result in the loss of the grammar for inflection.

Partial attachment can be seen in the SWAT verbaliser [264]. Most of its templates
have attached syntax rules used for obtaining well-formed text in some slots, how-
ever, there are also templates that do not have such rules. For instance, the template
used for generating text to specify that two individuals are different is given in List-
ing 3.5.

Listing 3.5: Prolog template used to verbaliser OWL axiom specifying that two indi-
viduals are not the same

1 s(differentIndividuals(Individual1 ,Individual2), Lexicon) -->
2 {traceRule(s:differentIndividuals/2:individualIndividual)},
3 name(Individual1 , Lexicon),
4 [and],
5 name(Individual2 , Lexicon),
6 [are], [different], [individuals].

The template in Listing 3.5 is taken from SWAT verbaliser source code4. For in-
stance, when given the axiom differentFrom(LJJ_Wittgenstein LE_Boltzmann) where
LJJ_Wittgenstein and LE_Boltzmann are instances of the concept Person, it can be
used to generate a text like “Ludwig Wittgenstein and Ludwig Boltzmann are dif-
ferent individuals”. The function name (lines 3 and 5) is used to retrieve the name
of supported individuals from a predefined lexicon. There is no CGR used in this
template, except for the implicit ordering of the various words. The name function
that is used in Lines 3 and 5 do not capture any linguistic information.

The embedding and attachment relations give rise to different families of grammar-
infused templates, which will be introduced in the next section.

4http://swat.open.ac.uk/tools/

73

http://swat.open.ac.uk/tools/

3.4 Categories of grammar-infused templates
Given simple templates and CGRs, there are seven ways how the templates and CGRs
can be combined to obtain grammar-infused templates, which are depicted graphically
in Figure 3.2. These families arise based on a grammar-infused template’s support
for relations introduced in the previous section. They will be formally defined and
illustrated in the remainder of this section.

In order to be able to easily identify these families, we need to first to formally define
the concept of grammar-infused templates as follows:

Definition 3.4.1 (Grammar-infused template) Given a simple template ts =
⟨L, fo, fs⟩ that belongs to some set T and some associable grammar rules Ap, Ac,
and E. We say that tg = ⟨ts, Ap, Ac, E⟩ is a grammar-infused template in the context
of T if the following conditions are met:

– embedded(ts, g) ∀g ∈ E;

– part_attached(T, Ap)

– comp_attached(T, Ac)

Given our formalisation of grammar-infused templates, we can be able to distinguish
between templates created using various technologies. It may be tempting to as-
sume that all grammar-infused templates, or augmented templates, created using
RosaeNLG (or related technologies) treat the relationship between the simple tem-
plates and associable grammar rules in the same manner. Our formalisation can be
used to identify the differences in how they combine the two artefacts. Specifically, a
set of grammar-infused templates, Tg, can be classified into one of the seven families,
based on characteristics of the following sets:

• the set of embedded CGRs (denoted with E)

• the set of partially attached CGRs (denoted with Ap)

• the set of compulsory attached CGRs (denoted with Ac)

Any collection of grammar-infused templates can be categorised as belonging to one
of the seven families if it met the following conditions, respectively:

(1) P family: Its CGRs sets are such that Ac = ∅, E = ∅ and Ap ̸= ∅ where ∅ denotes
the empty set.

(2) C family: Its CGRs sets are such that Ap = ∅, E = ∅ and Ac ̸= ∅.

74

Compulsory
attachment (C)

Partial
attachment

 (P)

Embedding (E)

Compulsory
attachment

and
partial attachment (CP)

Compulsory
attachment

and embedding
(CP)

Embedding and

partial attachment

(EP)

CEP

Figure 3.2: Seven different types of grammar-infused templates. CP, CE, EP, and
CEP are combinations of the primary three relations of how CGRs can be related to
templates.

(3) E family: Its CGRs sets are such that Ac = ∅, Ap = ∅ and E ̸= ∅.
(4) CP family: Its CGRs sets are such that Ac ̸= ∅ and Ap ̸= ∅ and E = ∅.
(5) CE family: Its CGRs sets are such that Ac ̸= ∅ and E ̸= ∅ and Ap = ∅.
(6) EP family: Its CGRs sets are such that Ap ̸= ∅ and E ̸= ∅ and Ac = ∅.
(7) CEP family: Its CGRs sets are such that Ac ̸= ∅, Ap ̸= ∅ and E ̸= ∅.

We will illustrate the classification criteria using the four templates in Listing 3.6 from
a hypothetical bilingual verbaliser that generates English and Latvian text. These
templates are formed by aggregated templates from Gruzitis, Nespore, and Saulite
[100] and Stevens et al. [264]. We have chosen not create new templates for illustrative
examples to avoid contrived examples.

Listing 3.6: Four grammar-infused templates encoded using a Definite Clause Gram-
mar (DCG) in Prolog (adapted from [100, 264])

1 one(Term, Lexicon) -->

75

2 {Term =.. [sameIndividual|Individuals]},
3 {flatten(Individuals , Args)},
4 {IndividualList =.. [individualList|Args]},
5 [the], [following], [terms], [denote], [the], [same], [individual],

[':'],
6 npList(and, singular , IndividualList , Lexicon).
7
8 two(functionalDataProperty(Properties), Lexicon) -->
9 {is_list(Properties), length(Properties , N), N>1},

10 [the], [following], [data], [properties], [are], [functional], [':'
],

11 verbList(singular, Properties , Lexicon).
12
13 three(sameIndividual(Individual1 ,Individual2), Lexicon) -->
14 name(Individual1 , Lexicon),
15 [and],
16 name(Individual2 , Lexicon),
17 [are], [the], [same], [individual].
18
19 four(subClassOf(Class1,Class2), Lexicon) -->
20 random_select([Ikviens|Katrs], uniform, Every),
21 name(Class1, Lexicon),
22 [ir],
23 name(Class2, Lexicon).

We recognise that our use of Prolog may be unexpected since it is not widely used in
NLG, with the exception of ontology verbalisers. As such, prior to illustrating how to
classify the above templates, we first explain what they do: the first template (lines 1-
6) is used to verbalise multiple Web Ontology Language (OWL) axioms that specify
that three or more individuals of some concept are the same. For instance, when
given the axioms SameIndividual(A B and SameIndividual(A C) then it would generate
texts of the form “the following terms denote the same individual: DTn nounAn, and
DTm nounBm, and so on (3 items)”. We use the tag DT to refer to a determiner,
in the fashion as the Penn Treebank project. The determiners’ subscripts are used
to denote agreement in number between them and their corresponding nouns. The
underlined segment is generated by the function npList (line 6). Its primary function
is to order the nouns associated with the individuals. However, in the given case, it
also makes use of a function that inflects the determiner to ensure that it agrees with
its corresponding noun.

The second template (lines 8-11) is used to verbalise axioms that declare functional
data properties, i.,e. one “that can have only one (unique) value y for each instance”
[19]. For instance, given the axioms FunctionalDataProperty(hasAge), FunctionalDat-
aProperty(hasHeight), and FunctionalDataProperty(numberOfChildren), then it would
generate “the following data properties are functional : [has age] and [has height],

76

and so on (3 items)”. The underlined part is generated by the verbList function. The
function is primarily responsible for ordering verb phrases. It also makes use of a
linguistic rule for ensuring that the verb are singular (line 11) since functional data
properties can have at most 1 value. The third template (lines 13-17) is similar to
template one, but it applies for an axiom where there are only two individuals. For
instance, when given the axiom SameIndividual(A B), it generates the text “A and B
are the same individual”. The name (lines 14 and 16) is used to resolve the lexical
item for each individual. The fourth template verbalises OWL axioms of the form
SubClassOf(Professor Teacher). It was first presented in Section 3.2 using GF and
RosaeNLG’s template syntax.

The four templates listed in Listing 3.6 make use of two types of rules: inflection and
synonymy rules. In particular, templates one and two make use of inflection rules (via
npList and verbList). These linguistic rules inflect verbs and determiners. Template
three is a simple template, hence has no linguistic rules besides word ordering function.
Template four has a rule that encodes synonymy for the adjective every (see line 20).
The four templates would belong to each of the families if the following criteria were
met:

1. P family: if the set of templates only had the templates numbered 1-3 in List-
ing 3.6, then the only linguistic rules that will exist in the templates would be
the captured via npList and verbList. Since the linguistic rules would only be
found in two of the three templates (i.e., templates one and two but not in tem-
plate three) then that means Ap ̸= ∅ and Ac = ∅, E = ∅, hence the collection
would classified as belonging to this family.

2. C family: if the set of templates only included template one and two, as they are
listed in Listing 3.6, then all the templates would have linguistic rules associated
with them via npList and verbList. Since there no other linguistic rules, the
collection would be classified as belonging to this family.

3. E family: if the set of templates only included template four, as listed in List-
ing 3.6, then the only linguistic rule in the templates would be an embedded
synonymy rule. Consequently, the collection would be classified as belonging
to this family.

4. CP family: if template three were removed from the set, template four’s syn-
onym rules were redesigned to be attached, and template four also made use
of attached linguistic rules (e.g., npList or verbList). In such a scenario, the
npList/verbList rules would be attached (compulsory type) and the synonymy

77

rules would be partially attached, hence the collection would belong to this
family.

5. CE family: starting with the set of templates given Listing 3.6; if template
one were removed and template four were edited such that it also had attached
linguistic rules then all templates would have attached rules and the only other
rules would be embedded; hence, the collection would be classified as belonging
to this family.

6. EP family: analysis of the templates given in Listing 3.6, then we see that the
attached linguistic rules are found only in a proper subset of the templates and
the synonymy rule is embedded in template four, hence the collection can be
classified as belonging to this family.

7. CEP family: if the set of templates given in Listing 3.6 had additional CGRs
that differ from the synonymy rules or the attached npList/verbList rules that
were attached to all templates, then the set of templates would belong to this
family since it already has partially attached syntax CGRs and the embedded
synonym CGR.

We will show the applicability of this scheme by categorising existing systems and
highlighting the tools’ various differences in the next section.

3.5 Classification of grammar-infused templates
Since there are no published criteria that can be used for differentiating between dif-
ferent augmented templates, especially in relation to bootstrapping, then one is likely
to use ad hoc criteria. For instance, one may choose a set of existing templates based
on the programming language used by their corresponding existing tools and template
specifications. Engineers who prefer to use the Python programming language may
choose to use CoreNLG or Keet, Xakaza, and Khumalo’s [138] templates since there
are python tools that support them. The limitation of such criteria is that it does not
consider notions of resource re-use and template scaffolding as being primary.

Our categorisation of grammar-infused templates resolves that. We illustrate the ap-
plicability of the categorisation of grammar-infused templates by classifying existing
systems. The classification can be used when choosing an appropriate system from
which to bootstrap when building new verbalisers. For the classification, we have
chosen to categorise existing systems/tools based on their supported input type, the

78

type of grammar-infused template used, identifying the family to which the grammar-
infused templates belong, the output languages generated by various systems, and
determining whether these tools have some of aggregation or whether generation is
achieved by simply slotting in values. We have chosen these features in order to under-
stand the input types supported and their impact on the grammar-infused template
design, they allow use to separate the grammar-infused template-types by language
since techniques used for well-resourced languages may not be appropriate for a Less-
Resourced Languages (LRLs) with morphologically-rich grammar, and also help us
identify whether the grammar-infused templates have already been used in a system
that supports aggregation since such techniques allow one to do away with redun-
dancy. We recognise that some of the existing systems may not be reusable directly
since their source code may not be publicly available. Nonetheless, we argue that
our analysis may still be used to demonstrate that they are valid candidates and one
can approach their original publishers to obtain the source code, where possible. In
addition, the classification can be used to differentiate between future systems as
well.

We collected a set of 54 ontology verbalisers and the tools used to create them. The
tools and systems were then categorised into one of the five following main NLG
approaches, where possible:

(1) templates: These are tools that make use of traditional templates only. These
templates only have fixed words, slots, and values that can be inserted into the
slots. In such systems, multiple templates can be used for variability when gen-
erating text from the a single input;

(2) canned text: Systems that make use of fixed text. Theses systems operate by
concatenating short snippets of text together to form sentences;

(3) grammar: These tools use hand-crafted fully-fledged grammars for ordering and
the inflection of all words — the engine has no fixing of words in a template-like
fashion;

(4) statistical methods: These tools either make use of grammars that are induced
from corpora or use small hand-crafted grammar rules combined with statistical
models for re-ranking candidate realisations;

(5) template + grammar: These systems make use of grammar-infused templates.
This is done either to obtain well-formed text in cases where traditional-templates
are insufficient and full-fledged grammar engines are excessive, or to obtain some
grammatical variability in the output text;

79

(6) other: Systems that do not fall into any of the previous categories (which may
be because insufficient information was presented in the documentation).

The list of all the 54 systems and the categorisation of their realisation approaches
are given in Table 3.1. We do not include CoreNLG and RosaeNLG in this analysis
because they either do not have a publication describing them or there is no formal
specification of their underlying language. In addition, the two libraries are relatively
new and do not have a clear governance system; hence, it is possible that their
developers would significantly modify them, possibly without explanation, such that
our analysis no longer applies. In addition, it is not easy to trace the changes over
time in tools that are not published. For instance, the current version of RosaeNLG
that is available is 3.2.1, however, it is unclear how it differs from previous versions.
Manually analysing the 93 versions (starting from v1.0.2 to v3.2.5) of RosaeNLG5

to identify changes in its generation approach is deemed infeasible. Technically, the
aforementioned issues may also affect published tools (to some extent). However, we
argue that is a minuscule risk since those tools have the backing of research groups
and/or private companies with a clear investment in the research community.

The table shows that 13 systems were categorised as using templates, 1 canned text, 10
grammar, 3 statistical methods, 16 templates + grammar, and 11 were categorised as
belonging to the other class. In a similar fashion to our previous paper [168], systems
that were not annotated with template + grammar were filtered out as out-of-scope,
and the remaining 16 systems were then classified into their respective grammar-
infused template family using the model introduced in Section 3.2. Their supported
input and other features were also examined. The classification was done manually by
analysing the grammar-infused templates found in research papers, technical reports,
and PhD theses. The only systems for which source code was also analysed were the
ones whose code was publicly released: the SWAT [264], multilingual museum [69],
NaturalOWL [8], OWL-ACE [124], Latvian [100], and isiZulu [138] verbalisers. The
classified tools are given in Table 3.2.

The table shows that 13 out of the 16 templates do not support the embedding of
CGRs to conjugate words. It also shows that 8 of the 16 templates make use of
syntax CGRs either for the entire sentence in the case of syntax templates or for
a segment of the template in the case of partial syntax templates. Moreover, the
various verbalisers and NLG systems expect different kinds of input and 82% of the

5https://rosaenlg.org/rosaenlg/ [Accessed: 16-Oct-2022]
6This work also makes use of SimpleNLG’s resources

80

https://rosaenlg.org/rosaenlg/

Table 3.1: Categorisation of the 54 ontology verbalisers and associated tools based
on the type of surface realisation.

Realisation method Reference to system/tool
Canned text Sadoun et al. [246]
Templates Hewlett et al. [108], Jarrar, Keet, and

Dongilli [118], Ang, Kanagasabai, and Baker
[9], Al-Yahya [5], Ngonga Ngomo, Mous-
sallem, and Bühmann [208], Power and Third
[226], Lyudovyk and Weng [163], Liang,
Stevens, and Rector [157], Liang, Stevens,
and Rector [157], Halpin and Curland [104],
Sanby, Todd, and Keet [249], Weal et al.
[280], Casteleiro et al. [50]

Grammar Amith et al. [7], Hielkema, Mellish, and Ed-
wards [109], Aguado et al. [3], Lavoie and
Rainbow [153], Bateman [18], Elhadad and
Robin [86], Camilleri, Fuchs, and Kaljurand
[47], Bouayad-Agha et al. [33], Bouayad-
Agha et al. [32], Dongilli and Franconi [79]

Statistical methods Cimiano et al. [60], Langkilde [148], White
[283]

Templates+grammar Grondelle and Gülpers, Davis et al. [98,
73], Stevens et al. [264], Androutsopoulos,
Lampouras, and Galanis [8], Dannélls [69],
Lim and Halpin [160], Davis et al. [72],
Byamugisha, Keet, and DeRenzi [44], Keet,
Xakaza, and Khumalo [138], Gruzitis, Ne-
spore, and Saulite [100], McRoy, Chan-
narukul, and Ali [190], Busemann [40], van
Deemter, Theune, and Krahmer [273], Kalju-
rand and Fuchs, Kaljurand and Fuchs [124,
124], Wilcock [286], Stenzhorn [263]

Other Mellish and Pan, Mellish and Pan [194, 195],
Power [224], Coch [61], White and Caldwell
[284], Piwek [221], Cojocaru and Trausan-
Matu [62], Nguyen, Son, and Pontelli [209],
Halpin and Wijbenga [105], Bouttaz et al.
[35], Bontcheva [29], Bontcheva and Wilks
[30]

81

Table 3.2: Classification and various features of grammar-infused templates for eleven
verbalisers, three NLG systems, and two realisers that have support for grammar-
infused templates (OWL = Web Ontology Language, XML = Extensible Markup
Language, DCG = Definite Clause Grammar, GF = Grammatical Framework, Lang.
= Languages, Embed. = Embedding, Conj. = Conjugation, Fam. = Family, Aggr.
= Aggregation, and Enc. = encoding)

System/tool Fam. Input Lang. Template enc. Template type Embed.
verb
conj.
rules

Aggr.

Verbalisers
Davis et al. [98, 72] C GF English,

Dutch
GF Syntax tem-

plates
No No

Stevens et al. [264] P OWL English DCG in Prolog Partial syntax
template with
number

No Yes

Kaljurand and
Fuchs [124]

C OWL English DCG Partial syntax
template

No No

Lim and Halpin
[160]

P - Malay, Man-
darin

C# Pattern No No

Androutsopoulos,
Lampouras, and
Galanis [8]

EC OWL English,
Greek

OWL Sentence plan Yes Yes

Gruzitis, Nespore,
and Saulite [100]

EC OWL Latvian GF Syntax tem-
plates with
synonymy

No No

Davis et al. [73] EP OWL English XML Template6 No No
Byamugisha, Keet,
and DeRenzi [44]

EP OWL Runyankore Java Pattern No No

Keet, Xakaza, and
Khumalo [138]

EP OWL IsiZulu Python Pattern No No

Dannélls [69] C OWL, GF English,
French, Ital-
ian, Finnish,
Hebrew and
Swedish

GF Syntax tem-
plates

No No

Hossain, Rajan, and
Schwitter [112]

C RuleML,
JSON

English DCG in Prolog Partial syntax
template

No No

NLG systems
Stenzhorn [263] EP XML English, Ger-

man, French,
Italian, Rus-
sian, Bulgar-
ian, Turkish

XML Morphological
template

No No

van Deemter, The-
une, and Krahmer
[273]

EP - English,
Dutch, Ger-
man

- Syntax template No -

Wilcock [286] EP XML - Extensible
Stylesheet Lan-
guage

Syntax template No Yes

Surface realisers
McRoy, Chan-
narukul, and Ali
[190]

E - English Template Spec-
ification Lan-
guage

Template Yes Yes

Busemann [40] E Generation
Interface
Language

- Template Gener-
ation Language

Rule Yes Yes

82

verbalisers that use grammar-infused templates are designed to generate text from
ontologies. All the information in Table 3.2 can be used to make informed decisions
when deciding to bootstrap a new system from existing templates. In particular, it
can be used to identify any given language’s existing systems and their corresponding
grammar-infused templates. It can also be used to determine the suitability of each
system’s template type based on their supported input type and the characteristics
of the realisation approach.

3.6 Demonstration of how to classify systems
In the previous section we classified a number of existing systems. We will illustrate
how classification is done by using three verbalisers: Hossain, Rajan, and Schwitter,
Keet, Xakaza, and Khumalo, Dannélls [112, 138, 69]. We chose to use these systems
because they are recent, rely on different technologies, and generate texts that belong
to different families.

The entity-relationship model verbaliser created by Hossain, Rajan, and Schwitter
[112] currently supports only English as output, its templates are captured through a
DCG in Prolog, and the templates have syntax trees that cover only a segment of the
template. Listing 3.7 shows an example of the grammar-infused template in lines 1-3
that relies on some reusable rules. The template uses the np rule, which consequently
relies on noun rule, for constructing noun phrase that is to be followed by the fixed
phrase “is an entity type”. When creating the noun phrase, the template specifies
the whether their parsing or generating text (i.e., mode:M can either be mode:proc or
mode:gen), specifies that the noun phrase should take the singular form via num:sg ,
and parses the entity (i.e., type:entity) that is going to be inserted in the slot whose
position is marked by pos:subj.

Listing 3.7: Grammar-infused templates encoded using a DCG in Prolog for parsing
a English sentence declaring an entity (Source: [112])

1 s([mode:M, type:entity, sem:L1-L2]) -->
2 np([mode:M, num:sg, type:entity, pos:subj, sem:L1-L2]),
3 [is, an, entity, type], ['.'].
4
5 np([mode:M, num:N, type:T, pos:P, sem:L1-L2]) -->
6 noun([mode:M, num:N, type:T, pos:P, sem:L1-L2]).
7
8 noun([mode:proc, num:N, type:entity, pos:P, sem:[L1|L2]-[[L0|L1]|L2]])

-->
9 lexical_rule([cat:noun, num:N, type:entity, pos:P, sem:L0]).

10

83

11 noun([mode:gen, num:N, type:entity, pos:P, sem:[[L0|L1]|L2]-[L1|L2]])
-->

12 {lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:_X,
sem:L0])}, WForm.

In general, the templates verbalise entity, relationship, attribute, and constraint dec-
larations by using linguistic rules captured through the functions vp, np and verb. The
attached rules are responsible for constructing verb phrases, noun phrases, and conju-
gating verbs. Since all the templates use those attached rules and there are no other
CGRs used hence they were classified as belonging to the C family of compulsory
attachment in Figure 3.2 (i.e., all CGRs are attached).

Figure 3.3: Architecture of the isiZulu ontology verbaliser that makes use of patterns
(Source: [138])

Keet, Xakaza, and Khumalo [138] built a verbaliser prototype for verbalising OWL
ontologies in isiZulu, a grammatically complex South African language. Since tradi-
tional templates were deemed inadequate for the language due to its complexity, they
designed templates — which they call patterns — and accompanying algorithms for
generating text. The verbaliser relied on Python and hand-crafted algorithms that
capture the templates and the rest of its components are shown in Figure 3.3. In ef-
fect, the combination of templates and algorithms means that the templates make use
of three categories of linguistic rules: morphological agreement, noun pluralisation,
and verb conjugation. All the templates make use of the embedded morphological
agreement rules. The noun pluralisation and verb conjugation rules are attached to
a subset of the templates. This means that the templates only have embedded and
partially attached linguistic rules hence the verbaliser belongs to the EP family in
Figure 3.2.

84

Dannélls [69] built a verbaliser that generates descriptions of museum artworks. It
makes use of GF to capture a painting ontology and the verbalisation templates.
For instance, it can generate the English sentence “Big Garden was created in 1937”
using the GF abstract and concrete functions in Listing 3.8. In the listing, the [69]
relies on GF’s separation of abstract and concrete syntax modules in order general
notions about their grammar-infused template (via the abstract function specified
in lines 1-3) and language specific linguistic information (via the concrete function
specified in lines 5-8). The abstraction functions specifies that the template has two
slots and they are reserved for a painting (i.e., Painting_Artwork) and the time period
it was created (i.e., Painting_TimePeriod). The concrete function makes use of GF’s
internal function passiveVP to construct a passive verb phrase using the word “create”
(referenced using the GF variable create_V2). It also makes use of the function mkAdv
to construct an adverb that modifies a verb phrase. This adverb is constructed using
a preposition (i.e., in_Prep) and the values insert into the second slot (i.e., o2). The
passive verb phrase and adverb are then combined to form a verb phrase using mkVP.
The constructed verb phrase and the value inserted into the first slot are then used
to build the entire sentence using mkCl7.

Listing 3.8: Declarations of abstract and concrete GF function that are used to
verbaliser Paintility ontology (Source: [69])

1 fun Painting_hasCreationDate :
2 El Painting_Artwork
3 -> El Painting_TimePeriod -> Formula ;
4
5 lin Painting_hasCreationDate o1 o2 =
6 mkPolSentPast (S.mkCl o1 (S.mkVP
7 (S.passiveVP create_V2)
8 (S.mkAdv in_Prep o2))) ;

Overall, the verbaliser’s templates use syntax rules from GF’s Resource Grammar
Library (e.g., mkVP in the template given in Listing 3.8). These rules allow the
verbaliser to generate multilingual text. All the templates use the CGRs and the
deletion of the templates does not result in the deletion of the rules since the RGL’s
rules are designed to be reusable. This means that the verbaliser belongs to the C
family in Figure 3.2 since it only has compulsory attached rules.

7This function is for constructing declarative clauses

85

3.7 Utility
In this section, we demonstrate the usefulness of the notion of grammar-infused tem-
plates, its definition, and the classified systems. Specifically, we do so by demon-
strating how one can pick appropriate grammar-infused templates when building a
hypothetical children’s game that is designed for learning about animals in isiZulu.
The game can be thought of as a question generator from an ontology or conceptual
model. In order for the game to be engaging, it would need to be accompanied by
appropriate graphical content, however, we will not focus on that aspect since it is
not relevant to our demonstration of utility. When deciding to build a system to
generate such questions, the following steps, most of which were conceptualised by
[25, p.1090], become pertinent:

1. Obtain description of domain from domain expert;
2. Create/choose provisional model;
3. Transform model into a mode that is understood by domain experts;
4. Request domain expert feedback;
5. Incorporate feedback;
6. If there are no conflicts, finalise the model; otherwise go to step 3.
7. Design templates for generating questions;
8. Generate question(s) on demand.

In this process, a provisional model or ontology can be built from scratch or extended
from an existing one; hence the first step is optional. Whatever approach is taken,
the created or reused artefact can only be determined as fit for purpose after a do-
main expert8 approves of its contents. Since such experts may not have expertise
with modelling languages then one can transform a model into a diagrammatic rep-
resentation, natural language description or only use sample data when presenting
it to them. Interpreting any of these layperson-friendly representations may also
be time-consuming due to the cognitive load associated with a potentially large leg-
end or glossary for diagrammatic representations or due to a possible difficulty in
interpreting a potentially unclear automated textual report. As such, a structured
approach that may be more efficient is the use of natural language generation to pro-
duce yes/no questions that probe the contents of the model, as advanced by [25], and
can be incorporated in the activities already discussed (step 3 and 4).

8This descriptor includes both educational game designer and zoologists

86

Overall, this means that the engineer will have to create two sets of templates. The
first collection would be designed for the domain expert(s) and another set would
be designed for the final end user (i.e., players of the game). The generation of
such yes/no questions is not novel, it can already be found in computer-assisted
educational exercises that make use of ontologies (e.g., [53]). The current method
of building template-based tools to generate these yes/no questions is to follow a
two-step design process: selecting constructs to support and designing templates.
In particular, one first decides on which constructs from a modelling language to
support so as to limit the scope, depending on the expressiveness of the language.
For instance, if an engineer chooses to start with the use of the knowledge captured in
the African wildlife ontology [131] (and possibly extended for their game) then they
would need to create templates for the following three OWL constructors, at the very
least:

1. SubClassOf(C1 C2)
2. ObjectPropertyAssertion(OP I1 I2)
3. DisjointClasses(C1 C2)

For instance, when given the axiom SubClassOf(Lion Animal) and the isiZulu lexical
items for the concepts Lion and Animal (ibhubesi and isilwane, respectively), one can
generate the question Ingaba azizilwane onke amabhubesi? ‘Is every lion an animal?’.
The appropriateness of the generated question(s) largely depends on the templates
and the audience they are designed for. More generally, the engineer needs to make
decisions regarding the following:

1. verbalisation: The must decide on the choice of words to use in a template
to express each construct, especially for morphologically rich languages (e.g.
[100, 136]). This can be achieved by surveying the end-user’s preference or it
could be decided by the template designer. The definition of grammar-infused
templates can be used to identify, together with the user’s preference choices, to
assess whether simple templates would suffice or linguistic rules must be added
to the templates. For instance, if one determines that the template Ingabe
[C1] SC-dla [C2] kuphela? is preferred to generate questions of the form Ingabe
amakati adla inyama kuphela? “Do cats eat only meat?” and Ingabe izinja zidla
inyama kuphela? “Do dogs eat only meat?” then the definitions may be useful
to identify that the formation of -dla requires linguistic rules that may either
be attached or embedded.

87

2. slot design: A decision also has to be made on the type of slots to be used
in the templates. One decides on whether to use semantic variables that are
ad hoc (e.g., Model-T’s template [232]), linguistically motivated slots types
(e.g., CLaRO’s user-friendly templates [137]), or slot types from ontologies. We
demonstrate the differences between the different slot types by extracting and
modifying template segments from the systems described in [245, 232, 137].
The templates can be domain-specific names as can be seen in the template
“Is [name] located in the [area] area, near [near]?” that can be used to describe
restaurants. Here, [name] refers to the name of a restaurant, the term [area]
refers to geographical area where the restaurant is located , and [near] refers to
landmark that is close-by. Another approach would be to use syntax categories
like in the template “Is there [noun phrase] for [noun phrase]?”. This approach
may result in templates that are easy to understand from the perspective of the
end user, if they have some familiarity with basic linguistics9, and the slot can
accommodate a broader list of input values. At the same time, these kinds of
template slots also introduce challenges with respect to managing which combi-
nation of noun phrases will yield gibberish. The last slot type uses notions that
are directly tied to an ontology. The template “The [CE1] [OPE] [CE2]?” uses
the notion of class expressions (CE) and object property expressions (OPE).
This may make the mapping between templates and axiom types easier, but it
also limits the re-usability of templates outside ontology verbalisation.

3. bootstrapping: In the event that verbalisation requires complex grammar-infused
templates due to the nature of the intended output language and said language
is under-resourced, one has to investigate the possibility of bootstrapping tem-
plates from a related domain or language to save time and effort (e.g., [42,
p81-107]).

In the above process, our classification of existing grammar-infused templates in Ta-
ble 3.2 can be used in choosing an existing form of grammar-infused templates prior
to creating templates for another language. In particular, the table can be used,
when bootstrapping, to identify the grammar-infused methods that exist for a re-
lated natural language and identifying the relationship between template and CGRs
for a given type of grammar-infused templates. When building a question generator,
it can be used to determine whether it is possible to embed CGRs for conjugating
verbs and whether an existing kind of grammar-infused template already supports

9This can be useful in situations where the end-user is expected to be able to control the text
being generated.

88

aggregation. The only other existing technique that has been used to measure the
re-usability of grammar-infused templates is a string-edit based measure (see [42,
p81-107]). However, such a measure does not pay special attention to the type of re-
lationship that exists between the linguistic rules and templates. Our approach puts
such a relationship at the fore and enables one to make the following choices:

1) should CGR reuse not be a priority and adequate verbalisation can be achieved
using a few templates since there are only three functors, then templates that
support the embedding of CGRs (E/CE/EP/CEP families) may suffice as either
stand-alone or as a building block to a larger NLG system.

2) if the reusability of CGRs is a priority and the isiZulu noun pluralisation and verb
conjugation rules [129, 136] are adequate, then one can make use of templates that
belong to the C/P/CP/CE/EP/CEP families.

Until now, choosing an template language would be based on one’s experience and
exposure with existing work. For instance, experienced NLG engineers who work with
English might choose the Template Generation Language [40] or Template Specifica-
tion Language [190] while new NLG engineers might choose contemporary augmented
template systems (e.g., RosaeNLG). Our Table 3.2 is useful because it shows that the
only templates that support isiZulu, which have already been shown to be suitable
for verbalising class subsumption [138], belong to the EP family, so then both possi-
bilities can be supported. However, support for the first possibility would be limited
should the other two constructors need to be verbalised via embedding other kinds
of CGRs in addition to morphological agreement CGRs.

3.8 Discussion
In the previous section, we demonstrated the utility of our definition and classification
of grammar-infused templates with special emphasis for isiZulu. We now turn to look
at the grammar-infused templates in the broader sense in order to understand which
ones support reusable linguistic rules across the different languages. In addition, we
will discuss other differences we have found in the classified systems.

The classification shows that even though most grammar-infused templates (63%)
do not currently support any form of aggregation (see last column in Table 3.2),
most of them have detachable grammars, and therewith support grammar re-use in
some form. It also shows that most grammar-infused templates (81%) do not embed
CGRs to conjugate verbs. This limited support for CGR embedding also means that

89

most templates encourage grammar detachability through the attachment relation.
Overall, this means that most grammar-infused templates are geared towards scenar-
ios where there are limited resources thanks to their support or encouragement of
grammar detachability.

The framework used to capture the templates and linguistic rules may also introduce
differences even though the combined elements are of the same type. For instance,
there are two main types of templates that use syntax CGRs: (i) syntax templates
and (ii) partial syntax templates. A syntax template is a template with a syntax tree.
A partial syntax template is similar to this, but the syntax tree covers only a subset
of the sentence. In both kinds of syntax templates, the syntax CGRs are added to
introduce a two-dimensional structure that is either used for multilingual template
support or error correction. In particular, the GF-based templates use the syntax
tree to obtain multilingualism through the RGL. This can be seen in the multilin-
gual museum verbaliser [69] that supports English, French, Italian, Finnish, Hebrew
and Swedish through the library. The Dutch soccer report generation system cre-
ated by [273] uses the syntax trees to check whether referential and quantificational
expressions are correct. This shows that that framework used to encode the tem-
plates introduces potential differences even when the template types are the same.
In particular, while all the mentioned templates attach syntax CGRs, in partial or
compulsory manner, the use of GF to encode templates offers multilingual support
that is not available in syntax templates that do not use GF.

Lastly, we have learned from our analysis that there are a number of different general-
purpose languages (and sometimes markup languages) used to encode the templates
and the language used may impact a verbaliser’s supported input languages. For
instance, in our analysis of the multilingual systems (recall Table 3.2) we see that
GF-based tools afford one with multilingual support through the RGL, but they do
not generate text by working directly with ontology languages such as OWL. In such
tools, the ontologies need to be transferred to GF (e.g., [11]) and this may be time-
consuming for large ontologies. This shows that if one intends to introduce syntax
CGRs and use GF to support multilingualism and grammar detachability, then that
must be weighed against limiting the types langauges you can take as input.

90

3.9 Summary
In this chapter, we proposed a model that has two relationships for pairing templates
and CGRs in Section 3.2, we used those relations to define seven possible families
of grammar-infused templates that exist in Section 3.4, and we then identified the
surface realisation methods used by 54 existing systems and classified all the systems
that make use of grammar-infused templates in Section 3.5. We also demonstrated
the utility of the classification in the context of picking an existing system, to be
used as a foundation, when building a question generator for model validation in
conceptual modelling.

We now turn to a discussion of the usefulness of the grammar-infused templates be-
yond choosing an existing generation method. Our definition of grammar-infused tem-
plates allows us to draw a clear line to separate the templates from the grammar rules.
As a consequence, we observe that most existing templates do not capture sub-lexical
constituents hence they would need to be extended, if they are to be used in combina-
tion with Context Free Grammars (CFGs), in order to support morphologically-rich
languages. There are only a few existing grammar-infused templates that introduce
sub-lexical constituents and of those systems, and only patterns [138, 44] support the
generation of a Nguni language. Widespread adoption of grammar-infused templates,
or especially ones with a variety of sub-lexical constituents, relies on the ability to
compare and determine their suitability for each natural language. However, this is
not possible at the moment since there is no shared conceptualisation of templates, a
central component of grammar-infused templates, across languages that exhibit dif-
ferent types of morphology. In the following Chapter, we address this by creating a
model that is formalised in OWL. The model could have been created without the
formalisation that we presented in this chapter. However, we argue that our formali-
sation is beneficial as it allows us to be precise regarding what we mean by the term
“grammar-infused template” and it clarifies how the various elements relate to each
other.

91

Chapter 4

A task ontology for templates to
support morphologically-rich
languages

In Chapter 3, we differentiated between simple and grammar-infused templates in
Definitions 3.2.1 and 3.4.1, respectively. Simple templates suffice for languages with
simple grammar or in areas where one can make use of writing conventions. By
languages with simple grammar, we are referring to ones with limited word-to-word
agreement, and possibly disjunctive orthography, such as English. For isiXhosa and
isiZulu, templates suffice in some areas, however, they need to be combined with
Computational Grammar Rules (CGRs) to form grammar-infused templates so that
they can be used in all cases. The purpose of this approach is to put greater emphasis
on sub-word elements — something that has largely been ignored in surface realisation
even though it has been explored in Machine Learning (ML)1 as a way of dealing with
out-of-vocabulary words.

In order for grammar-infused templates to be usable for generating text in isiXhosa
and isiZulu, and allow for the reuse of the technologies, we need ways of representing
both the simple templates and associable CGRs. When we scrutinise the two ele-
ments in this pairing, we see that capturing grammar rules is easy because there are
numerous formalisms that are appropriate for Nguni languages (e.g., Grammatical
Framework (GF)). As far the templates are concerned, the methods used by the
systems listed in Table 3.2 are not sufficient as-is.

1e.g., https://github.com/google/sentencepiece

92

https://github.com/google/sentencepiece

In order for the approaches listed in Table 3.2 to be appropriate for isiXhosa and
isiZulu, they need to support the languages’ complex morphology, have a precise
definition of the various template concepts so as to support accurate assessment of
each template type, and allow the use of computers to verify the templates’ consis-
tency or to achieve interoperability. We use the term “model” to refer to an explicit
specification of the elements that can be used in templates and the relationships that
exists between them. For instance, if the template language being used is Extensi-
ble Markup Language (XML) then the model is the XML Schema Definition (XSD)
model. We do not use the term ‘model’ to refer to a ML model.

To demonstrate the limitations of the methods used by those systems, we shall start
by focusing on the models of simple templates. An example of such a model can be
seen in the work by Jarrar et al. [118]. The authors introduce an XSD specification
for purposes of verbalising Object-Role Modeling (ORM) models. When templates
are created from such a model in to use to use in situations where one needs to
capture some grammatical agreement between words, developers often adopt writing
conventions to overcome their limitations. As such, they are able to generate under-
standable texts for languages with simple grammar without using the “full machinery
[of Natural Language Generation (NLG) that may also require] automated morpho-
logical analysis for each language” [118]. However, in order to support languages with
complex morphology, we need to look to other languages for models that combine
template and computational grammar rules, even if they are ad hoc.

Out of the sixteen verbalisers and NLG systems that rely on grammar-infused tem-
plates, as classified in the previous chapter’s Table 3.2, only nine have support for
languages other than English. Of those nine, only patterns [43, 135] have support
for African languages. Patterns have been used for generating isiZulu [135] and Run-
yankore [43] text. They are extensions of simple templates that are able to capture
some of the morphological agreement relations that exist between words. More pre-
cisely, patterns differ from simple templates with respect to three aspects they have
introduced, namely: sub-lexical constituents such as concords, rules for specifying the
source of the concord’s value, and rules for forming words from an ordered sequence
of affixes. These ad hoc templates are used in combination with limited CGRs in that
they compensate for the simple template’s grammatical limitations and, to an extent,
the underlying simple template compensates for the inadequacies of the CGR(s). This
approach has wide domain applicability, since the constituents of the simple template

93

should, theoretically, be able to support all domains. Practically, however, the exist-
ing patterns [43, 135] are ad hoc and of limited scope, thus cannot support language
fragments that differ significantly from the ones already supported with respect to
linguistic features. For instance, it was necessary to amend the original constituents
in the isiZulu patterns (as first presented by [133]) with the possessive concord and
locative affixes so as to support the verbalisation of part-whole relations [134]. More-
over, their linearisation algorithms are tightly-coupled with the application domain,
the verbalisation of axioms.

These identified gaps demonstrate that there is still a need for a formalism or spec-
ification of simple templates, especially ones that take into account morphologically
rich languages, so that we can support Nguni languages. Consequently, simple tem-
plates must be extended via the introduction of the sub-lexical components (à la [43,
135]). Such an extension will introduce added complexity with respect to the number
of elements, relations, and constraints. As such, it is critical to have methods for
verifying the consistency of the templates. In addition, since such templates are built
to support low-resourced languages, the specification must support re-usability and
interoperability across systems (i.e., systems for text generation, template manage-
ment, discovery, etc.). In addition, this means that the specification should avoid
being tightly-coupled with the CGRs or linearisation algorithms.

In this chapter, we develop a method of capturing simple templates that is appro-
priate for Nguni languages. More precisely, we develop the Task ontology for CNL
Templates (ToCT), a task ontology for templates that contains knowledge so as to
be able to deal with sub-lexical components. We use the term ‘task ontology’ in the
same vein as Chavula and Keet’s [55], to refer to a model that belongs to the layer
where one specifies “language-specific scenario oriented knowledge to enhance specific
computational tasks” [55]. We evaluate the task ontology through the use of compe-
tency questions. We show that the ontology can capture words that fall outside the
competence of simple templates for languages with complex morphology. We also
created a data-to-text and an knowledge-to-text system for Nguni languages whose
templates are captured using ToCT. Their templates capture a variety of word types
and sub-lexical features and they produce understandable and grammatically correct
texts. The two NLG systems will be described later in Chapter 6.

In the following sections, we present the method used to develop ToCT, its content,
validation, and demonstrate how to use it. Section 4.1 presents the method followed
for developing the ontology, its content, formalisation in Web Ontology Language

94

Create/update
SPARQL

queries for CQs
Create/update

CQs

Create/update
task

ontology

1

2

Artefact creation

Ascertain CQ
answerability

3

4

Artefact validation

CQs
and
task

ontology

Figure 4.1: High-level representation of the process followed for each iteration in
the creation of the task ontology. Abbreviations: Competency Question = CQ and
SPARQL = SPARQL Protocol and RDF Query Language.

(OWL), and answerability of the Competency Questions (CQs). Section 4.3 presents
a demonstration of how to use the ontology for two different languages.

The work presented in this chapter is based on work published at the 12th Interna-
tional Conference on Formal Ontology in Information Systems: Ontology Showcase.
Specifically, we have included additional examples of ToCT-captured templates and
also described the additional iteration of ontology development.

4.1 Model development
We created the task ontology in three iterations, broadly following the main tasks in
ontology development methodologies as summarised in [254]. Specifically, we carried
out four main activities: competency question (CQ) creation, knowledge gathering,
ontology creation and formalisation, and validation. A high-level visualisation of each
iteration is given in Figure 4.1.

The first iteration went through the entire development process and focused on
knowledge acquisition and support for isiXhosa, and the second iteration focused
on improvements for applicability and extensions to also suffice for both isiXhosa and
isiZulu. The third iteration focused on cleaning up with respect to the object property
names used and capturing linguistic annotations.

In the rest of this section, we will use the process shown in Figure 4.1 as a guide to
discuss the creation of the task ontology. Specifically, we will first discuss the final

95

competency questions, the creation and formalisation of the task ontology, and how
we ascertained that the task ontology.

4.1.1 Competency questions

We created the following competency questions, as of the initial iteration, to indicate
the scope of the model. The design of the above CQs is based on our domain knowl-
edge regarding English-oriented templates, knowledge of isiXhosa as an L1 speaker2,
and knowledge of isiZulu as an L2 speaker and researcher. The goal was to capture
the template features as they are found in existing English-oriented templates and
also the features needed to address the gaps so that they are appropriate for Nguni
languages. These gaps are addressed via the inclusion of sub-lexical constituents and
specifying word-to-word grammar dependencies. The resulting CQs are as follows
and we will explain them afterwards:

Q1: How many fixed phrasal and lexical segments does [template] have?
Q2: How many words that depend on others does [template] have?
Q3: Which properties may result in a change of form between [word1] and [word2]

where there exists a dependency?
Q4: If there is a dependency between [word] and [word], which word is the governor?
Q5: Does [word] have a constant base form?
Q6: Which grammar rule will be activated when forming [word] if its dependent on

another word?
Q7: Can [word] ever be placed in [slot]?
Q8: Can the word ordering in [template] exist without the template?
Q9: Can the word portion’s ordering in [word] exist without the word?
Q10: Which words use [grammar rule]?
Q11: Is [template] grammar-infused?
Q12: How many slots does [template] have?
Q13: How many fixed segments have more than one word?
Q14: For each [word], in what order are its associated grammar rules applied, if at

all?

In the CQs above, we use the square brackets are used to denote variables. For
instance, Q12 can take the forms ‘How many slots does template2 have?’ and ‘How
many slots does tml9 have?’ (among many) where the template2 and tm19 are possible
values for the variable [template]. In the templates, we also use terminology that was

2Elsewhere in the literature, the term native or first language speaker is used.

96

introduced in Chapter 3. For instance, we use the term “slot” in the usual sense and
“a change of form” to refer to the usual change of a word’s surface form due to the
application of linguistic rules.

The 14 CQs are translated into SPARQL Protocol and RDF Query Language (SPARQL)
queries and the translatable questions were used to query the formalised model. The
CQs and their corresponding SPARQL queries are listed in Appendix A. The answer-
ability of the CQs will be revisited in Section 4.1.4.

4.1.2 Ontology creation

We sought to reuse existing ontologies to aid in the conceptualisation and formalisa-
tion stage, as it is best practice. We reused the Collections Ontology (CO) [59] and
the Model for Language Annotation (MoLA) [95] for modelling a template’s sequence
of items and a rich set of of language features about the languages supported by a
templates, respectively. Specifically, we created a module from the CO (omitting the
not needed Disjoint(Collection Item) axiom) for ordered and non-unique associations.
We chose to use MoLA since it captures a broad set of linguistic information (cf. its
alternatives). Since it captures information about dialects and regions, that infor-
mation may be useful when reusing templates for a new audience. The collections
ontology was chosen since it is the only OWL ontology, to the best of our knowledge,
that can be used to capture generic knowledge collections (see Walls et al.’s [279]
Biological Collections Ontology) and infer knowledge about them even when there is
“incomplete information” [59].

Since the ontology to be developed concerns linguistic concepts, we had considered
using existing ontology lexicalisation models as a base. However, they do not have
a large number of the required features; hence, adapting them means spinning off
a variant in addition to adopting their idiosyncrasies. Notably, ontolex-lemon and
GOLD and related artefacts are not usable off-the-shelf [54, 55] for the languages in
question. The only model built for such languages, i.e, Bantu Language Model (BLM)
[31], requires one create all forms of a lexical entry instead of creating them ‘on the
fly’ when they are used in a template. It also has no notion of a template and provides
no means for specifying dependencies between words. We ended up not using those
resources because of the stated reasons.

Concerning knowledge gathering for the iterations, we relied on primary sources such
as grammar textbooks, that describe morphology and grammar. To support isiXhosa

97

and isiZulu, we relied on Meeussen, Katamba, Bourquin [128, 192, 34] as primary
sources for the different kinds of concords and parts of speech that exist in the lan-
guages. To determine how these concords are used together with other morphemes
to form words, we relied on [214, 189, 81, 82] for isiXhosa and [48, 248, 49, 78, 64]
for isiZulu.

The first iteration’s conceptualisation included linguistic annotation concepts (i.e.,
syntactical and morphosyntactical properties). During the iteration, the goal was to
create a modular model, à la lemon [187], in order to to avoid having to use every
aspect of ToCT, the ontology presented in this chapter, even when it is not needed.
The second iteration revealed differences in concord types between isiZulu and isiX-
hosa. Those differences, when coupled with the possibility of needing to update
the linguistic categories when supporting a new domain [133], motivated the need
to create separate and language-specific conceptual models. Eventually, in iteration
3, we created a separate task ontology for linguistic annotations and correspond-
ing language-specific axiomitisations, following Chavula and Keet’s framework [55].
This approach means that language-specific knowledge about linguistic properties, cf.
template-specific knowledge, can be kept separate. This avoids limiting the template
ontology’s suitability to only isiXhosa. The development and content of the isiXhosa
and isiZulu linguistic annotation ontologies will be revisited in Section 4.2.

The ontology is shown informally in Fig. 4.2, which was then formalised in OWL,
resulting in a so-called ‘task ontology’, called ToCT, intended for the specific task of
systematic, reusable, and interoperable template specification.

4.1.3 The ontology’s content

In the ontology, a template is a sequence of ordered words, slots, spaces, and punc-
tuation. A Word has the usual meaning. Similarly, The Space and Punctuation
concepts have their usual linguistic meaning.

Words There are two kinds of words in the model; fixed words and changing words.
The two types are captured via the Unimorphic word and Polymorphic word con-
cept. The meaning of each of those two concepts is as follows:

• Unimorphic word: these are signs with a single written representation. For
instance, the first word in the short English template “the [animal]” can only
have that written representation, irrespective of what value is inserted into the
slot.

98

Sl
ot

La
be

l

Sp
ac

e
Pu

nc
tu

at
io

n

C
on

co
rd

La
be

l
U

ni
m

or
ph

ic
 a

ffi
x

W
or

d
fra

gm
en

t

Va
lu

e

Af
fix

Af
fix

co
m

bi
na

tio
n

R
oo

t

pa
rtO

f

la
be

le
dW

ith
pa

rtO
f

Ph
ra

se

pa
rtO

f

Te
m

pl
at

e

La
ng

ua
ge

Te
m

pl
at

e
fra

gm
en

t

Va
lu

e

Pr
op

er
ty

 c
la

ss

U
R

I

fil
le

dB
y

W
or

d
fil

le
dB

y

co
nt

ro
ls

pa
rtO

f

fil
le

dB
y

re
lie

sO
n

re
lie

sO
n

la
be

le
dW

ith

pa
rtO

f

pa
rtO

f

{o
rd

er
ed

, n
on

un
iq

ue
}{o

rd
er

ed
, n

on
un

iq
ue

}

{o
rd

er
ed

,
no

nu
ni

qu
e}

Po
ly

m
or

ph
ic

 w
or

d
U

ni
m

or
ph

ic
 w

or
d

pa
rtO

f

{d
is

jo
in

t,
co

m
pl

et
e}

{d
is

jo
in

t,c
om

pl
et

e}

{d
is

jo
in

t,
co

m
pl

et
e}

{d
is

jo
in

t,
co

m
pl

et
e}

2.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.1

1.
.*

0.
.*

2.
.*

0.
.*

0.
.*

0.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

2.
.*

0.
.*

0.
.*

1.
.*

0.
.*

0.
.1

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

Figure 4.2: Representation of the concept, relations, and constraints found in the
task ontology for template specifications using Unified Modelling Language (UML)
notation.

99

• Polymorphic word: these are signs with multiple written representations be-
cause they possess at least one morpheme whose value is dependent on other
words. For instance, the first word in the short French template “du/de la/des
[l’ animal]” is a polymorphic word that can have one of three written repre-
sentations, depending on the number and gender of the noun inserted into the
slot.

The two types of words can be used to form phrases, captured via the Phrase con-
cept. Specifically, a Phrase is a sequence of Unimorphic and/or Polymorphic Words.
Alongside these elements, we also have the notion of a slot via the Slot concept, to be
used to be used to achieve dynamic strings. More precisely, a Slot is a placeholder in
a template and its value is drawn from a finite collection of Words or Phrases where
the collection is referred to as slot fillers. The slot’s label is a sign used to represent
the role played by all the slot fillers. The label is not necessarily a word or phrase
that exists in natural language. For instance, [first_name] is a valid slot label even
though it does not exist in any natural language — only its constituent signs are valid
English words (i.e., first and name).

Sub-lexical items There are three types of primary sub-lexical items in the model;
Root, Unimorphic affix, and Concord. Their meanings are as follows:

• Root: this is a morpheme that carries the principal meaning of a word and it
cannot be decomposed to finer granularity without losing its identity

• Unimorphic affix: this is a morpheme with a fixed value that carries some
abstract meaning and it is distinct from the Root

• Concord: this is also a morpheme that is distinct from the Root, it carries
some abstract meaning, it is appended to a root or stem for morphological
agreement with other words, and its value is drawn from a finite collection of
possible values (i.e., the concord fillers) based on the linguistic properties of a
controlling Unimorphic Word. The concord’s label represents the role played
by all the concord fillers.

To demonstrate these concepts, we now turn to the pattern fragment that was pre-
sented in Chapter 1 and taken from by Keet and Khumalo’s [136] work for verbalising
universal quantification:
⟨ QC (all) for NC1⟩onke ⟨N1⟩

100

The elements that have been introduced can be used to capture this pattern. Specif-
ically, in the above pattern, there is a Word element that may take different surface
forms (e.g., zonke, bonke, yonke, etc ‘all’). That element is followed by a Slot element
that can be replaced by nouns. The Word element is made up of multiple sub-lexical
elements. Specifically, it has a Concord and a Root element. The Root element has
the surface -onke and cannot be decomposed further.

Similar to how the Phrase concept ‘aggregates’ the various Word concepts, the Affix
combination concept can be used to ‘aggregate’ Affix concepts. Specifically, we
define the Affix combination as being a sequence of Affixes. The properties of the
various template and word portions can be specified via the Property class. The
task ontology does not capture detailed subclasses of the Property class. Instead,
we use two separate linguistic annotation ontologies for the concord types, one for
isiZulu and another for isiXhosa, and they their knowledge was gathered from primary
sources. This decision was made in order to avoid overburdening the task ontology, as
depicted in Figure 4.2, with the linguistic annotations. The development and content
of the two linguistic annotation ontologies will be discussed in Chapter 6.

Relations In the ontology, the labeledWith relation specifies the properties of a
template/word portion. The hasPart is a type of mereological relationship that is
equivalent to the inverse of Keet and Artale’s [132] part_of relation. Since Keet
and Artale have formalised the various part-whole relations in an OWL ontology
that makes use of Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE), we could have reused it. We have chosen not to reuse their part-whole
relations since the object property part_of is non-simple; hence, we cannot not use it
in a minimum cardinality constraint in OWL 2. Cardinality constraints are important
to detect template errors such as the invalid declaration of canned text as a template
(e.g., a template must have at least one slot). The filledBy relation is a relation that
specifies that a Word or Phrase is member of a specific slot’s fillers and controls is a
relation that specifies a rigid essential necessitation between a unimorphic word and
a concord’s value. The reliesOn relation is a relation that specifies a rigid existential
necessitation between (1) a slot and unimorphic word or (2) between a polymorphic
word and slot. In particular, in the first case it signifies that a polymorphic word
inserted into the slot cannot have a value without a Unimorphic word. In the second
case, the polymorphic word’s value depends on the Unimorphic word that is inserted
into the slot. For instance, if [SC]onke ‘all’ relies on the slot [subject], where SC stands
for subject concord, then the first word can only have its final surface form after a

101

value is inserted into the slot. When the word abantu ‘people’ is inserted into the slot
then first word’s surface form will be bonke ’all’.

All these relations have inverses but they are not shown in the Figure 4.2 for brevity.

4.1.4 Formalisation

In order to take advantage of a reasoner for detecting and removing semantic incon-
sistencies, we formalise the model in OWL using Protege 5.5. We used FaCT++ 1.6.5
reasoner to detect possible inconsistencies and there were none found.

We demonstrate the translation from CQ to SPARQL query using the translation of
Q1 to the following query:

1 SELECT distinct ?template (count(?unimorph) as ?numUnimorphWords)
2 (count(?phrase) as ?numFixedPhrases) ((?numUnimorphWords +
3 ?numFixedPhrases) as ?totalFixedParts)
4 WHERE {
5 {
6 ?template a toct:Template .
7 }
8 UNION
9 {

10 ?template co:item ?unimorph .
11 ?unimorph a toct:UnimorphicWord .
12 }
13 UNION
14 {
15 ?template co:item ?phrase .
16 ?phrase a toct:Phrase .
17 filter not exists { ?phrase toct:hasValue "" } .
18 }
19 }
20 GROUP BY ?template

In the above listing, all unimorphic words and phrases are selected from the templates
and the sums are calculated. Since most of the CQs, including CQ1 that we are using
to demonstrate the CQ-to-SPARQL translation, pertain to information that can only
be found in the ABox, we created a model to answer the CQs. The term ‘Abox’ refers
to individual-level knowledge and goes hand-in-hand with the class-level knowledge
(refereed to as the ‘Tbox’) in a knowledge base, as shown in Figure 4.3.

In our case, the model’s TBox is made up of ToCT, linguistic annotation ontolo-
gies, and alignment between the two (Property ⊑ PropertyClass, hasNounClass
⊑ labeledWith, and hasConcordType ⊑ labeledWith). The purpose of the linguis-
tic annotation annotation is to introduce language specific knowledge (e.g., isiXhosa

102

Figure 4.3: Conceptual representation of a Description Logic knowledge base (Source:
[130, pg45]).

has 15 noun classes). We did not create a separate linking model, á la Ontologies
of Linguistic Annotation (OLiA), since the created model’s purpose is only to query
establish the answerability of the CQs. The model’s ABox is made up of the following
template:

{personSlot} {SC} yeva nangoku

For the above ToCT template, we use an arrow from a concord to a slot to specify
that its value depends on the noun inserted into that slot. We use curly braces to
denote slot and polymorphic words are denoted via a box around its fragments. We
also use the shorthand SC to refer to a slot that appears within a word and takes
on values that are subject concords. The first slot is filled with unimorphic words
that are nouns and those slot fillers are labelled in order to determine the noun class.
The second word’s concord is also labelled using the concord annotation ontology.
Running the SPARQL query returns the result shown in Figure 4.4 where we can
answer the competency question and determine that there is only a single segment
that is fixed (i.e., ‘nangoku’).

Eight questions (CQs 1, 2, 3, 4, 5, 7, 11, and 12) were translatable and answerable
after querying the model. Two questions (EQ8.1 and EQ8.2) were not translatable
but were answerable through the analysis of the model: since templates and words
are lists then the ordering is a property possessed by the members only in the context
of the collection. Hence, the ordering information cannot persist if the collections do

103

Figure 4.4: List of fixed segments in the model used to answer the competency ques-
tions. This is the result of running the SPARQL query created from first competency
question.

not exist. The remaining four questions (Q6, Q9, Q10 and Q13), were not answerable
as they were no longer in scope. They pertain to linguistic rules that are have been
deemed unnecessary for morphologically-enhanced templates. These questions were
included as a means of filing the gap between the simple templates and the associable
CGR. More specifically, they capture the use use of CGRs in a template and word
and the order of CGR application. However, capturing this information may lead to
complex templates and there is no benefit to capture this information via an ontology
instead of the programming language used to build an NLG system. As such, we
decided to no longer support their associated requirements.

4.2 Ontologies and models for concord annotation
When NLG systems that use ToCT are built, they will need to be able to resolve the
values of concords, as they are found in various polymorphic words. To be able to
resolve the correct value of a concord, they need to be able to determine the type
of concord being used. ToCT’s labeledWith can be used to specify a concord type,
should a linguistic annotation ontology be chosen. However, the General Ontology
for Linguistic Description (GOLD) and related artefacts have been demonstrated to
not be up to the task [55]. Since the Noun Class System (NCS) ontology, and its
corresponding isiXhosa and isiZulu axiomitisations, have already been created, we
decided to build upon the resources and introduce related ontologies to be used for
the linguistic annotation of concord types. Following the NCS ontology, we also used
the framework presented in [55].

We gathered knowledge about the possible concord categories in Nguni languages from
Katamba, Meeussen, Bourquin [128, 192, 34] to create stopgap linguistic annotation
ontologies. The linguistic annotation ontology contains all the six shared concord
types that are listed in Figure 4.5 and the phi/mbi concord types and subtypes of the
adjectival and relative concords types. The isiZulu specific axiomitisation introduces
constraints to specify that it does not have the phi/mbi concords or the subtypes of

104

Figure 4.5: Informal list of the concords types found in the Concord Annotation On-
tology. These are contextualised in relation to NCS’s nominal classification property.
Specifically, we used the color blue for NCS ontology’s NominalClassification and
MorphoSyntacticProperty concepts. (Abbreviations: Negative = Neg., Adjectival
= Adj., Subjectival = Subj., Objectival = Obj., Relative = Rel., and Possessive =
Poss.)

the adjectival and relative concords. A visualisation of the annotation ontology, in
relation to the NCS ontology, is given in Figure 4.5.

The NCS and concord annotation ontologies can be linked/aligned ToCT via the fol-
lowing: hasNounClass ⊑ labeledWith and hasConcordType ⊑ labeledWith. We
now turn to discuss how the various ontologies and models fit together and demon-
strate the benefits of ToCT.

4.3 Use and benefits of artefacts
The relationship between the various artefacts is depicted in Figure 4.6. We use
boxes to label the layers introduces in Chavula and Keet’s framework [55]. The
artefacts that are created by the present author are shaded in orange to differentiate
them from existing ontologies and models. All the resources can be downloaded from
https://github.com/AdeebNqo/ToCT.

We now use two templates taken from existing literature in order to demonstrate how
to use ToCT. With respect to ToCT’s applicability for Nguni languages and other
languages outside that classification, we have chosen to capture isiZulu and Catalan
templates. Our inclusion of Catalan is to demonstrate the usefulness of ToCT for
moderately under-resourced languages that do not belong to the Nguni language
group.

105

https://github.com/AdeebNqo/ToCT

GOLD Collections

ontology

Noun Class

Ontology

Concord

Annotation

Ontology

ToCT MoLA

Concord

Annotation

Axiomatisation

Top Domain
Ontologies

Task Ontologies

Language

specific

axiomitisations

imports imports

imports

imports imports

Figure 4.6: Representation of the various ontologies and models that are created and
reused. Directed arrows labelled ‘imports’ denote that the source ontology or model
is imported by destination artefact. We use blue boxes that have rounded corners for
artefacts that we have created. We use grey boxes with sharp corners for artefacts
that have been created by others.

4.3.1 IsiZulu

We encode a pattern taken from [136], which was created for verbalising OWL sub-
sumption axioms, where the plain object properties are verbalised in the present tense.
It generates texts of the sort wonke umuntu udla isithelo esisodwa ‘each human eats
at least one piece of fruit’ where all the underlined sections are slots in the following
template shown in Listing 6.2.3.1.

Listing 4.1: IsiZulu template for verbalising subsumption axioms (Source: [136])
1 ⟨QC(all) for NCx⟩onke ⟨ pl. N1, is in NCx⟩ ⟨ SC of NCx⟩⟨verb stem⟩a
2 ⟨N2 of NCy⟩ ⟨ RC for NCy⟩⟨ QC for NCy⟩dwa

We encode the above template given in Listing 6.2.3.1 using our task ontology and ob-
tain the following partial template, expressed in Terse RDF Triple Language (Turtle)
syntax (explained afterwards):

Listing 4.2: IsiZulu template captured using ToCT for verbalising subsumption ax-
ioms

1 <plainOPPresentTense > a toct:Template
2 ; toct:supportsLanguage <kzn_zulu >
3 ; toct:hasFirstPart <all>
4 ; toct:hasLastPart <only>
5 ; toct:hasPart <noun1Slot >, <opverb> , <noun2Slot > .

106

6
7 <kzn_zulu> a mola:Dialect
8 ; rdfs:label "isiZulu"@zu
9 ; mola:inFamily <isiZulu>

10 ; mola:inRegion <kzn> .
11
12 <all> a toct:PolymorphicWord
13 ; co:index '1'^^xsd:positiveInteger
14 ; toct:reliesOn <noun1Slot >
15 ; toct:hasFirstPart <quantConcord >
16 ; toct:hasLastPart <onke>
17 ; toct:hasNextPart <noun1Slot > .
18
19 <quantConcord > a toct:Concord
20 ; toct:hasLabel "quantConc"^^xsd:string
21 ; cao:hasConcordType <subjConType >
22 ; toct:hasNextPart <onke> .
23
24 <onke> a toct:Root
25 ; toct:hasValue "onke"^^xsd:string .
26
27 <noun1Slot > a toct:Slot
28 ; toct:hasLabel "noun1"^^xsd:string
29 ; toct:hasNextPart <opverb> .
30
31 <opverb> a toct:PolymorphicWord
32 ; toct:reliesOn <noun1Slot >
33 ; toct:hasFirstPart <subjConc >
34 ; toct:hasLastPart <aChar>
35 ; toct:hasPart <verbStem >
36 ; toct:hasNextPart <noun2Slot > .
37
38 <subjConc> a toct:Concord
39 ; toct:hasLabel "subjectConcord"^^xsd:string
40 ; toct:hasNextPart <verbStem > .
41
42 <verbStem> a toct:Slot
43 ; toct:hasLabel "verbStem"^^xsd:string
44 ; toct:hasNextPart <aChar> .
45
46 <aChar> a toct:UnimorphicAffix
47 ; toct:hasValue "a"^^xsd:string .
48
49 <noun2Slot > a toct:Slot
50 ; toct:hasLabel ""^^xsd:string
51 ; toct:hasNextPart <only> .
52
53 <only> a toct:PolymorphicWord
54 ; toct:hasFirstpart <relCOdwa >
55 ; toct:hasLastPart <odwa>
56 ; toct:hasPart <qualCOdwa >
57 ; toct:reliesOn <noun2Slot > .
58
59 <relCOdwa> a toct:Concord

107

60 ; toct:hasLabel "relativeConcord"^^xsd:string
61 ; cao:hasConcordType <relConType >
62
63 <possConType > a cao:RelativeConcord .
64
65 <qualCOdwa > a toct:Concord .
66 ; toct:hasLabel "qualitativeConcord"^^xsd:string
67 ; cao:hasConcordType <subjConType > .
68
69 <subjConType > a cao:SubjectivalConcord .
70
71 <odwa> a toct:Root
72 ; toct:hasValue "odwa"^^xsd:string .

The snippet given in Listing 4.2 is partial because we have left out the Space instances
that should be placed between template fragments. The snippet uses three model
prefixes, which refer to our task ontology (toct), the model for language annotations
(mola), and the ontology we have used for isiZulu axiomitisation of the concord
annotation ontology (cao). A concise visualisation of the souce of the various concepts
found in the snippet is given in Figure 4.7.

List ListItem

Template Polymorphic

Word

Template

Fragment

Word

Fragment

Dialect Slot Root Unirmorph

Affix Concord

Concord

Type

labelledWith

supportsLanguage

Language annotation(s)

CO

MoLA

ToCT

Legend

Figure 4.7: Representation of the classes used in the isiZulu and some of the rela-
tionships between them. We label the subsumption relations via dotted arrow where
arrow’s source is the subclass and its destination is the superclass. We also label
the relationships that exist between the Template and MoLA’s Dialect and Concord
and the Linguistic annotation. All other relations are not shown for brevity. We use
boxes with rounded edges to denote elements from ToCT and sharp corners for ele-
ments from MoLA (highlighted green), CO (highlighted white), and ontologies used
for language-specific annotations (highlighted orange).

108

The isiZulu ToCT snippet illustrates the declaration of a template by showing three
elements: (i) the main template container, (ii) partial details of the dialect supported
by the template, (iii) and the template’s words. With respect to the template’s words,
we will demonstrate how polymorphic words and slots are formed. More specifically,
we will do this by emphasising how the various components of the two word types are
created and how they differ to Keet and Khumalo’s method of template capture.

The template’s first and last words are specified through hasFirstPart and hasLast-
Part (lines 3-4), specialisations of Collections Ontology’s firstItem and lastItem.
In addition to specifying the first and last word, we also specify the ordering of words
that fall in between them through the object property hasNextPart (see lines 17,
29, 36, and 51). The language supported by the template is specified via the sup-
portsLanguage object property (line 2). The dialect supported by the template is
captured in lines 7-10. It is an isiZulu dialect that is spoken in KwaZulu-Natal, South
Africa (line 10). Other information that is currently encoded about the dialect is that
it is part of the isiZulu family (line 9). A rich set of additional information can be
provided via MoLA. This differs from [136]’s patterns in that the language, or dialect,
that is supported by each template is made explicit.

The template’s words are subclasses of ListItem, from the collections ontology, and
they are specified as being contained in the template via co:hasPart (lines 5) thus
the cardinality constraints can be enforced. Lines 12-17 illustrate the declaration of
a Polymorphic word. The word is made up of two affixes, the so-called quantitative
concord and the root ‘-onke’ hence can result in the surface forms zonke, bonke,
lonke, etc. The polymorphic word’s value is determined by a value inserted into
the slot noun1Slot since the polymorph is specified as relying on its form (line 14).
Practically, the polymorphic word cannot have a final form unless a value that controls
quantConcord is inserted into the noun1Slot slot. The index of the polymorphic word
in the template is specified in line 13. That line, together with lines 5-6, need not
be specified explicitly since they can be inferred by an automated reasoner when the
first items are specified and the rest of the template fragments are connected via
hasNextPart.

The quantitative concord associated with all, the first PolymorphicWord, is declared
in lines 19-22. The concord has a label that can be used to visualise the template
even when no values are inserted. For instance, if its labelled “QC(all)” the first word
could be previewed as “[QC(all)]onke” when it is not tied to a specific noun. The
concord’s type is specified via quantConType, an instance of the quantitative concord

109

property from the isiZulu axiomitisation of the annotation ontology. The first and
last words use quantConcord and qualCOdwa respectively and we have annotated
those concords as being subjectival concords [34]. This differs slight from Keet and
Khumalo’s [136] use of a ‘quantitative concord’ since those words will be subjected
to phonological conditioning rules to obtain the file word.

In the original isiZulu pattern, there are implied constraints that are necessary to
generate the text. For instance, it is implied that in the slot that is present in the
first word, one will use a morpheme whose value depends on other word. When
patterns are used in practice, the authors tightly-couple the pattern and generation
algorithm; hence, they can have an explicit enforcement of this constraint. Since
we use a declaration specification for the simple templates, motivated by reuse and
other features, we then need deliberate methods of detecting violations of template
constraints. For instance, ToCT specifies that a template must have at least two
fragments and a polymorphic word must have at least one fragment. As a such, if one
would specify a template without elements, then an automated reasoner would detect
the inconsistency. In our approach, the enforcement of template constraints does not
come at expense of tightly-coupling the templates with text generation rules.

4.3.2 Catalan

We also encode a template taken from [118], which was created for verbalising unique-
ness constraints in ORM diagrams. ORM diagrams are representations of the world
that specify the objects and the relationships that exists between them — they are
commonly used for capturing business rules. Its generates texts of the kind Cada Per-
sona ha de A com a màxim una Nom ‘Each Person must Has at most one Name’ where
the underlined part denotes a value that may take the value “a” or ∅, depending on
the gender of the word’s subject. The original template is given in Listing 4.3:

Listing 4.3: A Catalan template for verbalising uniqueness constraints in ORM
1 <Constraint xsi:type="Uniqueness">
2 <Text>-[Uniqueness] Cada</Text>
3 <Object index="0"/>
4 <Text>ha de</Text>
5 <Role index="0"/>
6 <Text>com a màxim un(a)</Text>
7 <Object index="1"/>
8 </Constraint>

110

We encode the template above using the task ontology and obtain the partial tem-
plate, expressed in Turtle syntax, shown in Listing 4.4.

Listing 4.4: A Catalan template for verbalising uniqueness constraints in ORM cap-
tured using ToCT

1 <uniquenessORM > a toct:Template
2 ; toct:supportsLanguage <catalan>
3 ; toct:hasFirstPart <cadaPhr>
4 ; toct:hasLastPart <slot2>
5 ; toct:hasPart <slot1>, <haPhr>, <roleSlot >, <maxPhr>, <one> .
6
7 <cadaPhr> a toct:Phrase
8 ; toct:hasValue "-[Uniqueness] Cada"^^xsd:string
9 ; toct:hasNextPart <obj1Slot > .

10
11 <obj1Slot> a toct:Slot
12 ; toct:hasLabel "objectSlot"
13 ; toct:hasNextPart <haPhr>
14
15 <haPhr> a toct:Phrase
16 ; toct:hasValue "ha de"^^xsd:string
17 ; toct:hasNextPart <roleSlot > .
18
19 <roleSlot> a toct:Slot
20 ; toct:hasLabel "roleSlot"^^xsd:string
21 ; toct:hasNextPart <maxPhr> .
22
23 <maxPhr> a toct:Phrase
24 ; toct:hasValue "com a màxim"^^xsd:string
25 ; toct:hasNextPart <one> .
26
27 <one> a toct:PolymorphicWord
28 ; toct:reliesOn <obj1Slot >
29 ; toct:hasFirstPart <un>
30 ; toct:hasLastPart <suffix>
31 ; toct:hasNextPart <objSlot> .
32
33 <un> a toct:Root
34 ; toct:hasValue "un"^^xsd:string
35 ; toct:hasNextPart <suffix> .
36
37 <suffix> a toct:Concord
38 ; toct:hasLabel "[gender]"^^xsd:string .
39
40 <obj2Slot> a toct:Slot
41 ; toct:hasLabel "AnotherObjectSlot"^^xsd:string .

In Listing 4.4 we have left out the Space instances between template fragments in
the snippet for brevity. In the snippet, there is a single polymorphic word (lines
8-12) that can have two forms. The word is composed of the Unimorphic affix
whose label is “un” (line 10) and a Concord that can take the value ∅ or “a” (line 11)

111

depending on the value of the word put into the slot to which it depends (line 9). A
Catalan specific ontology needs to be used to annotate the gender of words inserted
into obj1Slot and a grammar engine can then determine the value of the suffix
concord based on that gender. The correspondence between the two templates, by
line numbers, are as follows:

1. Listing 4.3 Line 2 → Listing 4.4 snippet lines 7-9
2. Listing 4.3 Line 3 → Listing 4.4 snippet lines 11-3
3. Listing 4.3 Line 4 → Listing 4.4 snippet lines 15-17
4. Listing 4.3 Line 5 → Listing 4.4 snippet lines 19-21
5. Listing 4.3 Line 6 → Listing 4.4 snippet lines 23-38
6. Listing 4.3 Line 7 → Listing 4.4 snippet lines 40-41

There are three phrases in Listing 4.4 (cadaPhr in lines 7-9, haPhr in 15-17, and
maxPhr in 23-25) and their text is captured via hasValue. One should not rely on
only the hasValue property to specify its value. While the property is useful for
provided an easy to find ‘annotation’ of the phrase’s final value, one must also specify
the phrases’ associated word. We will demonstrate how haPhr can be specified, in a
more detailed fashion, in order to take advantage of an automated reasoner. In order
to prevent the creation of phrases with single or no words associated with them, then
the haPhr element must be created as shown in Listing 4.5.

Listing 4.5: Detailed specification of a phrase for the Catalan template for verbalising
uniqueness constraints in ORM captured using ToCT

1 <haPhr> a toct:Phrase
2 ; toct:hasFirstPart <hWord>
3 ; toct:hasLastPart <dWord> .
4
5 <hWord> a toct:UnimorphicWord
6 ; toct:hasValue "ha"^xsd:string
7 ; toct:hasNextPart <dWord> .
8
9 <dWord> a toct:UnimorphicWord

10 ; toct:hasValue "de"^^xsd:string .

Similar to the isiZulu example, ToCT is able to capture words whose form depends
on other words. In the isiZulu ToCT template, we demonstrated that the word -onke
‘all’ is captured via a PolymorphicWord in lines 12-17 since it can take multiple forms
(e.g., zonke, bonke, etc) depending on the noun class of the noun inserted into the
template’s first slot (i.e., noun1slot in lines 27-29). Similarly, the last word in line
6 of Listing 4.3 is captured via ToCT’s PolymorphicWord class (see lines 27-31). A
Catalan-specific ontology for linguistic annotation can be used to annotate some of

112

the words to be inserted into the obj1Slot slot. As a result, the NLG system that
uses the Catalan ToCT template could produce the final value of the polymorphic
word ‘on the fly’. In addition, the values inserted into slots can also be captured via
the PolymorphicWord concept. As such, the ToCT template would not generate the
incorrect Catalan text Cada Persona ha de A com a màxim una Nom ‘Each Person
must Has at most one Name’ where the inclusion of the underlined part is dependent
on the word being quantified.

4.3.3 Other languages and benefits

In the isiZulu example, we have presented an automated reasoner as a beneficial tool
for detecting violations of template constraints. That ability is crucial for morpho-
logically rich languages since there might be inconsistencies introduced when creating
multi-part concepts, such as polymorphic words. In addition to that, automated rea-
soners can be used with ToCT to support the ability to share and reuse templates
for any language, especially in real-world systems where one is likely to have a large
repository of templates. In such cases, one needs to have the ability to search for
potential templates to reuse by using the ‘meaning’ of the template fragments. To
demonstrate the benefits of the aforementioned ability, consider the following sce-
nario: we are interested in building a UML verbaliser and has access to Jarrar et
al.’s ORM verbalisation templates and several other templates that we created. All
the templates in the collection are specified using ToCT. The person would like to
answer the following question: Which templates, in the collection, can I reuse as-is
or in a modified form to verbalise UML diagrams?

Since the ToCT allows the annotation of templates using the labeledWith relation,
one can specify the ‘meaning’ of certain fragments (e.g., slots). For instance, using the
snippet in Listing 4.4 that was introduced in Section 4.3.2, the instances obj1Slot,
roleSlot, and obj2Slot can be labelled, using some annotation ontology, to iden-
tify that they expect ORM objects and roles. Using a meta-model for conceptual
models, the information system used to manage the template collection can deter-
mine the correspondence between ORM and UML. Thus suggest templates that may
be appropriate for reuse, even if they were initially designed for a different type of
concept model. This feature is not limited to the discovery of templates for verbal-
ising conceptual models. Technically, one can achieve the same goal by annotating
XML templates, however, ToCT goes beyond that and caters to languages that are
morphologically rich and can rely on the existing reasoners.

113

4.4 Discussion
Having introduced, evaluated, and demonstrated how to use ToCT, we now turn
to discuss the strengths of our approach compared to existing methods. There are
no existing ontologies for template specification other than ToCT. English relies
on straightforward templates, since it has relatively simple grammar and disjunctive
orthography, and thus can thrive well without an ontology-driven solution.

In this chapter, we presented ToCT to support ontology-driven solutions. While the
focus was on catering for templates for African languages, the plurality of incompati-
ble verbalisers for English suggests it can benefit from at least systematization, if not
standardisation. ToCT can assist with that and its strengths lie with grammatically
more challenging languages with features such as agglutination and having to deal
with gender and noun classes that affect other words in a sentence. More specifically,
it does not require the creation of multiple forms of the same template to capture
changing words. It also does not pose a categorical limit for slot fillers; any affix,
word, or phrase can be used and their POS or sub-lexical category can be specified
separately via the Property class and labeledWith object properties (cf. pattern’s
[133] original coverage of only nouns, verbs, and pronouns, but not, e.g., attributes).
Consequently, with ToCT, subject domain semantics are not buried in the code and
there is an explicit template specification thus enabling reuse.

In accordance with Findable, Accessible, Interoperable, Reusable (FAIR) principles,
the ontology and supplementary material such as SPARQL queries associated with
the CQs have been assigned a license (CC BY 4.0), have a persistent identifier3 and
metadata, and are findable. Interoperability is fostered by formalising the template
model in a Semantic Web language. We recognise that ToCT captured templates
are long and some of its concepts, especially ones with multiple parts, are not easy
to read and create by hand. For instance, the ToCT-captured Catalan template is
longer than Jarrar, Keet, and Dongilli’s [118] XML template. While this is often the
case for ToCT templates, it is trumped by ToCT’s ability to support grammatically
complex languages, automated reasoning (cf. existing models, such as Jarrar, Keet,
and Dongilli’s XSD schema), and interoperability, among other benefits. Moreover,
the effort required for creating, managing, and reading ToCT can be reduced in
the long term since Graphical user interface (GUI)-based tools can be created for
template induction, management, discovery, and visualisation. Such interfaces can

3https://doi.org/10.5281/zenodo.4704362

114

https://doi.org/10.5281/zenodo.4704362

be thought of as being analogous to block-based visual programming language tools
(e.g., Google’s blockly4 library and editor). This means that NLG engineers do not
need to be highly skilled to create templates. They would only need to understand
the meaning of ToCT’s concepts. Theoretically, it should be easier to learn and create
ToCT templates when using such tools, compared to creating large grammars. This
is similar to how it can be easier to work with domain-specific languages vs. general
purpose programming languages since the former are specialised.

In the isiZulu and Catalan examples presented in Section 4.3 to demonstrate how
to use the ontology, the rules for deciding the value of each concord, based on the
word that governs it, and the rules that determine the formation of each polymorphic
word are concord value resolution are not encoded in the templates. The CGRs are
purposefully kept separate so that they are usable for different applications’ tem-
plates. This raises the question of how to organise the various components in or-
der to ensure maintainability and resource reuse. Economical use of resources and
general maintainability must be key considerations because Nguni languages are low-
resourced. Since our goal is create the foundations for how build surface realisers that
are reusable and easy to maintain, we now turn to architectural considerations in the
next chapter.

4https://developers.google.com/blockly

115

https://developers.google.com/blockly

Chapter 5

Knowledge-driven architecture for
a maintainable surface realiser

In the previous chapter, we presented a task ontology for capturing morphologically
rich simple templates. The templates, captured via the task ontology, can be used
together with other components. This raises the question of how best to organise the
various components in a surface realiser. The few attempts at building realisation
components for African languages [129, 44] have been ad hoc and have not made
architectural design decisions a centrality; hence, their maintainability is negatively
affected.

A maintainable surface realiser for Niger-Congo B languages could be created by
using an existing consensus architecture (i.e., one where there is wide agreement
in the NLG field regarding what modules ought to exist and how they should be
organised.), as-is or in modified form. However, there is no consensus in Natural
Language Generation (NLG) on what tasks should be in the surface realisation module
and how they should be organised. The closest thing to a consensus is Reiter and
Dale’s three-step pipeline architecture [241, 68] and the Reference Architecture for
Generation Systems (RAGS)1 project showed that, in practice, researchers who choose
the three-step architecture do not agree on where to place tasks between the modules
[196]. For instance, while Reiter and Dale present the surface realisation module as
only being responsible for ordering, several NLG systems also make lexicalisation the
module’s responsibility. Overall, this means that the following statements hold:

• Existing African language NLG systems do not use an architecture that yields
realisers that are easy to maintain.

1http://mcs.open.ac.uk/rags/

116

http://mcs.open.ac.uk/rags/

• There is no consensus on a maintainable surface realiser architecture within
NLG that can be tweaked for Niger-Congo B (NCB) languages.

In this chapter, we address this gap for NCB languages by conducting an extensive
literature review and comparison of 77 reviewed surface realisation systems. Instead
of using the low-level tasks listed in [68, 196], we focus on five aspects: tactical deci-
sions, structure encoding, structure induction, structure linearisation, and candidate
ranking. Our tasks differ from [68, 196] in that they are more detailed and therefore
enable a fine-grained analysis of surface realisation. We focus on these tasks based on
our experience with the control issues and tight coupling of linearisation rules by sys-
tems that we evaluated. Examples of the evaluated systems are the isiZulu verbaliser
[138] and Komet-Penman Multilingual (KPML) [18]. These issues affect the ease of
use and reuse of the few existing resources. Using this comparison of existing surface
realiser modules, we identify their limitations for NCB languages and then proceed
to the creation of a new architecture for surface realisers to support low-resourced
NCB languages. The architecture possesses a majority of the maintainability char-
acteristics specified in the software product quality model presented in [38] (namely
modularity, componential re-usability, and analysability). Our architecture differs
from existing ones because of the following:

• It introduces a pre-processing module that operates on sentential structures in
order to introduce context-specific grammatical information.

• It places the ranking module prior to linearisation so that it can have access to
explicit grammatical knowledge/annotations.

• It uses an ontology to formalise templates and therewith allows analysability.

• It offers detection of logical inconsistencies in templates, sharing, and compar-
ison of templates.

• Lastly, it moves tactical decisions outside the realiser.

Section 5.1 presents the method used to collect systems for analysis, Section 5.2 in-
troduces the criteria used for the analysis of the architectures, Section 5.3 presents
our categorisation of the architectures used in existing systems, Section 5.5 presents
the new architecture, Section 5.6 compares the new architecture with existing archi-
tectures, Section 5.7 discusses the utility of using an ontology to capture template
knowledge, and Section 5.8 concludes and summarises the chapter.

117

The work presented in this chapter was published in the ACM Transactions on Asian
and Low-Resource Language Information Processing [170]. We have updated it and
used a different set of images to improve clarity.

5.1 Collecting surface realisers for analysis
We review existing surface realisers as they are found in multiple domains and eras
in order to identify current and past architectural trends at finer detail. This is done
to uncover knowledge that is useful for building maintainable architectures for NCB
languages. We compiled a list of 77 NLG systems and tools in preparation for the
architecture analysis, by extending the 54 verbalisers and tactical realisers found in
Chapter 3 with the following resources:

• 9 grammar engines (SimpleNLG variations, GenDR [151], and JSrealB [200]).

• 12 data-driven NLG systems (10 of which are recent and 2 are dated).

• 2 recent systems that make use of an augmented template tool (e.g., RosaeNLG).

We do not include the submissions to the surface realisation tasks since they are
not developed with maintainability in mind. The submissions were developed with
an emphasis on relying on the same kind of input and making it possible to use
automated metrics for comparison. This was done because the goal of the task “was
to make it possible, for the first time, to directly compare different, independently
developed surface realisers by developing a ‘common-ground’ input representation
that could be used by all participating systems to generate realisations from” [23],
even though “[b]y the time teams submitted their system outputs, it had become
clear that the inputs required by some types of surface realisers were more easily
derived from the common-ground representation than the inputs required by other
types. There were other respects in which the representations were not ideal, e.g.
the deep representations retained too many syntactic elements as stopgaps where no
deeper information had been available” [22].

From the above initial list, we manually read all the papers and then removed systems
whose paper(s) have insufficient details about the surface realiser’s architecture to be
able to determine how it works (e.g., because the paper’s scope was different), and
then manually determined the architectures used by the remaining systems.

118

We constructed the above list so as to have surface realisers that are used in-the-wild
and analyse their architectures. Overall, this review of systems differs from the one
presented in Chapter 3 because of the following:

1. It does not focus on existential relationships between the templates and gram-
mar rules

2. It analyses all kinds of surface realisers that are used by real-world systems and
it is not limited to the analysis of grammar-infused templates and systems that
make use of such templates.

Instead, this review analyses a number of surface realisation tasks and their organi-
sations in various systems. The criteria used in the present work is introduced in the
next section.

5.2 Analysis criteria
The current work’s comparison focused on the following aspects:

• Structure selection: This is the tactical decisions component, which acts as the
interface between the surface realiser and prior modules (i.e., it connects the
various modules). It is responsible for making linguistic decisions given the se-
mantic input (e.g., deciding on syntactical structure to use for a certain event
type) [94]. We use the term ‘structure selection’ instead of tactical decisions in
order to improve clarity regarding the relationship of this task with structure
encoding, induction, and linearisation. Moreover, this task can be thought of
as a kind of “structure determination”. However, we prefer to use the term
“selection” to make clear that it may involve the selection from an existing
set of structures. Using SimpleNLG [94] as an example, the term “determina-
tion” may suggest that the NLG engineer is responsible for the creating English
grammar rules for encoding sentential structure and using them at the same
time. However, SimpleNLG already provides such rules and the engineer is only
selecting which ones are appropriate for certain semantic input to their system.

• Structure encoding: This is the method used to encode the sentential structure.
It captures the elements and position(s) of elements that will be inserted in
order to form the final surface text, and specifies how they elements are to be
ordered. For instance, some realisers use a template while others may use a
phrase structure tree.

119

• Structure induction: This refers to the method used to create the structures
used for capturing sentences. These structures come in many forms. For in-
stance, they could be phrase-structure trees or templates, among the many
possible options. In some cases, the structures may be induced from examples,
but they can also be induced/created manually by the NLG engineer based on
their domain expertise.

• Structure linearisation: This is the formation of text from some ordering struc-
ture. In the case of simple templates, it is equivalent to slot filling. In the
case of grammar-infused templates and grammar-only approaches, it may also
include forming words from lemmas, and traversing a tree to form the final
surface texts.

• Ranking: The candidate filtering mechanism is responsible for selecting one
sentence/structure out of many candidate output sentences or sentential struc-
tures.

We have chosen the above tasks for analysis so as to zoom into overlooked issues
and avoid limitations seen in architectures of previous-generation systems. For in-
stance, structure selection is important because analysis of the connection between
the preceding module and the realiser provides us with an understanding of how to
avoid the control issues present in dated wide-coverage tactical generators [94]. More
precisely, such systems require a specialised input form since they make tactical de-
cisions the responsibility of the realiser. As such, they offer no direct way for control
over how “phrases are built and combined, inflectional morphological operations and
linearisation” [94, p91]. In addition, they allow us to scrutinise the placing of the lin-
earisation algorithm, and its combination with other aspects, is key in avoiding the
need to create an algorithm each time a new template is created (e.g., [129, 44]). Our
analysis of the method used to encode the sentential structures is important because
some techniques (e.g., use of large-scale grammars) are not suitable for low-resourced
languages. Lastly, we include the ranking because it is intertwined with linearisation
in some NLG systems.

5.3 Surface realiser architectures and categories
The complete list of considered systems and tools are given in Table 5.1. The twelve
architectures differ in the organisation of the various modules and methods employed
for structure induction, encoding, and linearisation.

2https://github.com/m477301/KnowledgeGraphVerbalizer

120

https://github.com/m477301/KnowledgeGraphVerbalizer

Table 5.1: List of all classified systems whose surface realiser where classifiers and
their corresponding architecture identifiers. Abbreviations: Architecture = Arch. and
Identifier = id.

Arch.
id.

Reference(s) to system

0 Aguado et al. [3], Bateman [18], Bouayad-Agha et al., Bouayad-Agha
et al. [33, 32], Coch [61],, Dongilli and Franconi [79], Lareau et al. [151]

1 Cimiano et al. [60], Lavoie and Rainbow [153] Lavoie and Rainbow [153]
2 Bohnet et al. [27]
3 Busemann [40]
4 Knight and Hatzivassiloglou [140], Langkilde [148]
5 Nakanishi, Miyao, and Tsujii [205], White [283]
6 Angeli, Liang, and Klein [10], Kondadadi, Howald, and Schilder [144]
7 Byamugisha, Keet, and DeRenzi [44], Keet, Xakaza, and Khumalo [138],

Lyudovyk and Weng [163]
8 Androutsopoulos, Lampouras, and Galanis [8], Ang, Kanagasabai, and

Baker [9], Camilleri, Fuchs, and Kaljurand [47], Casteleiro et al. [50],
Dannélls et al., Dannélls [71, 70], Davis et al. [72], Davis et al. [73],
Elhadad and Robin [86], Gruzitis, Nespore, and Saulite, Gruzitis, Nes-
pore, and Saulite [100, 101], Hossain, Rajan, and Schwitter [112], Jarrar,
Keet, and Dongilli [118], Kaljurand and Fuchs [124], Lim and Halpin
[160], Liang, Stevens, and Rector [157], Liang et al. [159], Hewlett et
al. [108], McRoy, Channarukul, and Ali [190], Sanby, Todd, and Keet
[249], Stenzhorn [263], Stevens et al. [264], Weal et al. [280]

9 Amith et al. [7], Bollmann [28], de Oliveira and Sripada [74], Dušek [83],
Gatt and Reiter [94], Hielkema, Mellish, and Edwards [109], Kuanzhuo,
Lin, and Zhao [146], Mazzei, Battaglino, and Bosco [186], Molins and
Lapalme [200], Ramos-Soto, Gallardo, and Diz [235], Vaudry and La-
palme [277]

10 Lavoie and Rainbow [153]
11 Mairesse et al. [175], Moryossef, Goldberg, and Dagan [202], Wong [289]
12 Castro Ferreira et al. [51], Gubbala et al. [102], KnowledgeGraph Person

verbaliser2

121

Preprocessing
(optional)

Structure

selection
 Structures

Text

Input

Structure
linearisation

Structure
induction

Figure 5.1: Representation of surface realiser architecture category 1. We use the
grey box with sharp corners to denote the surface realiser and a yellow box with
sharp corners to denote that the structures are captured using a grammar.

We first group these architectures into categories based on similarities in their organ-
isation of modules and this resulted in six categories — they are given in Table 5.2.
While our use of the term ‘architecture’ is in the usual sense, we recognise that use of
the term ‘architecture category’ is not common place; hence, we now turn to demon-
strate how to interpret Table 5.2 using the system described by Lavoie and Rainbow
[153].

The system uses architecture 10 and according to Table 5.2, it belongs to category
A4. Its surface realisers only contain sentential structures and a structure lineari-
sation module. Table 5.2 also shows us that unlike other architectures in the same
category, it relies on hand-coded sentential structures and uses grammar rules for
linearisation.

We now turn to discuss these categories and provide examples of systems whose
realiser’s belong to each of the categories. Our examples do not put a lot of em-
phasis on categories A1-2 since those architectures are only prevalent in dated NLG
systems.

Architecture category 1 (AC1): tactical generators The first category of sur-
face realiser architectures, referred to as the AC1 category, is shown in Figure 5.1. It

122

Table 5.2: Surface realiser architectures, their associated categories, and the differ-
ences between them. Abbreviations: Select = Sel., Ranking = Rank., and Structure
= str.

Architecture
identifier

Category Structure
induction

Structure
linearisa-
tion

Module A Module B

0 AC1 Hand-
coded

Grammar - -

1 AC1 Data-
driven

Rule-based - -

2 AC1 Data-
driven

Data-
driven

- -

3 AC1 Hand-
coded

Rule-based - -

4 AC2 Hybrid Data-
driven

Str. sel. Str. lin. +
rank.

5 AC2 Hand-
coded

Rule-based Str. sel. +
lin.

rank.

6 AC3 Data-
driven

Rule-based Str. sel. +
rank.

Str. lin.

7 AC3 Hand-
coded

Rule-based Str. sel. +
lin.

∅

8 AC3 Hand-
coded

Rule-based Str. sel. Str. lin.

9 AC4 Hand-
coded

Rule-based - -

10 AC4 Hand-
coded

Grammar - -

11 AC5 - - - -
12 AC6 Hand-

coded
Rule-based - -

123

is used by so-called tactical generators; realisers are responsible for making linguistic
decisions given semantic representations and also applying linguistic rules to convert
decided upon syntactical structures to obtain surface text (see [94] for details). Tacti-
cal decisions are conducted via rules. Sentential structure encoding and linearisation
is conducted via a large grammar and the formalism used for the grammar varies
across the various systems. An example of such a tactical generator is the KPML
system [18].

Architecture category (AC2): tactical generator with ranker The second
category, referred to as AC2, is shown in Figure 5.2. It is similar to AC1 in that it
makes use of a grammar for encoding sentential structure. However, it differs be-
cause it has a sentence ranking module. The architectures that belong to AC2 differ
since some use a data-driven module and other use rules for structure linearisation
(see Table 5.2). For instance, in one system [271] the authors performed a com-
prehensive analysis of a parallel corpus made up of pollen concentration data and
human-authored pollen reports. They analysed those reports in order to create an
NLG system that abides by the pipeline architecture introduced in Dale and Reiter
[68]. For surface realisation, their system reuses the approach taken for the Sumtime
project, in that they make use rules to order “the phrases in the output and also to
perform punctuation tasks” [259]. A different approach can be seen in Knight and
Hatzivassiloglou’s [140] work where they take the input, construct a lattice (i.e., a
finite state machine), and use a bigram model to determine the most likely path in
the lattice. Specifically, instead of creating grammar rules or templates to verbalise
each input, they use the input to construct the a lattice that specifies all the possible
output sentences (some of which are not grammatically correct) that can be generated
for an input. Once a lattice exist, they then make use of a bi-gram model to rank the
possible paths.

There are modules labelled A and B in category AC2. They represent the different
ways that the two categories combine structure, linearisation, and ranking. The
architectures that belong to this category are illustrated in Figure 5.3. In the category,
structure linearisation is either combined with selection in module A or with ranking
in module B. Technically, we could have split architecture 4 and 5, as labeled in
Figure 5.3, such that they are separate architecture categories; however, doing so adds
no explanatory value. Another example of a generator that uses the architecture is
the generator built by [148], that takes semantic input and uses it to create a forest
via rules (a generation forest is a context free representations that specifies all the

124

possible sentences that can be generated). The forest’s subtrees are ranked and then
linearised to produce the final sentence.

Preprocessing
(optional)

A Structures

Text

Input

B

Structure
induction

Figure 5.2: Surface realiser architecture category AC2. The modules labelled A and
B represent different combinations of structure selection, linearisation, and ranking.
For instance, in architecture 4 we have A = structure selection and B = structure
linearisation and ranking. We use the grey box with sharp corners to denote the
surface realiser and a yellow box with sharp corners to denote that the structures are
captured using a grammar.

Architecture category 3 (AC3): structures in imperative languages The
AC3 category, shown in Figure 6.1, is similar to AC2, since some of its architec-
tures include a ranking module. It also has modules labelled A and B and they also
represent the different ways that the two categories combine structure, linearisation,
and ranking. In category AC3, there is no ranking and linearisation either can be
combined with selection in one module (A) or done separately (in A and B, respec-
tively). Similar to category AC2, we could have split these into separate architecture
categories, however, doing so would add no explanatory value. The category also
differs from AC2 as it relies on templates for structure encoding. A visualisation of
the architectures that belong to this category is given in Figure 5.5.

An example of such an NLG system is the template-based OWL verbaliser for Afrikaans
[249], where the tactical decisions component maps the various axiom types that are
supported to templates. For instance, axioms of the type SubClassOf(C1 C2) (in OWL

125

Preprocessing
(optional)

A Structures

Text

Input

B

Structure
induction

Architecture category 2
Preprocessing

(optional)

Structure
selection
 Structures

Text

Input

Linearisation
and ranking

Structure
induction

Preprocessing
(optional)

Selection
and

linearisation
Structures

Text

Input

Ranking

Structure
induction

Architecture id 4

Architecture id 5

describes
the

architectures

Figure 5.3: The two architectures that belong to architecture category 2

126

Preprocessing
(optional)

A

B

Structures

Text

Input Structure
induction

Figure 5.4: Surface realiser architecture category AC3. The modules labelled A and
B represent different combinations of structure selection, linearisation, and ranking.
For instance, in architecture 6 we have A = structure selection + ranking and B =
structure linearisation. We use the grey box with sharp corners to denote the surface
realiser and a blue box with sharp corners to denote that the structures are captured
using a template that may be grammar-infused.

functional syntax style) where C1 and C2 are classes, are mapped to a single tem-
plate. This mapping is encoded via a Java rule that selects the following template
whenever it encounters a subsumption axiom3:

1 <Constraint type="OWLSubClassOfAxiom">
2 <Text>Elke</Text>
3 <Object index="0"/>
4 <Text>is 'n</Text>
5 <Object index="1"/>
6 </Constraint>

When given SubClassOf(DOG, ANIMAL), the verbaliser will produce Elke hond is ’n dier
(‘Each dog is an animal’). The linearisation of each template is done within Java;
it involves filling in slot values and doing minor cleanup such as removing trailing
spaces. The system described by [144] also uses this architecture, but it uses a data-
driven module for ranking and selecting the best template to use for any provided
input. The chosen template and processed input are then linearised using a rule-based
module.

3Taken from https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2015/sanby_todd.
zip/index.html

127

https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2015/sanby_todd.zip/index.html
https://projects.cs.uct.ac.za/honsproj/cgi-bin/view/2015/sanby_todd.zip/index.html

Preprocessing
(optional)

A

B

Structures

Text

Input Structure
induction

Preprocessing
(optional)

Selection
and ranking

Linearisation

Structures

Text

Input Structure
induction

Preprocessing
(optional)

Selection
and linearisation Structures

Text

Input Structure
induction

Preprocessing
(optional)

Selection
and ranking

Linearisation

Structures

Text

Input Structure
induction

Architecture category 3

Architecture id 6

Architecture id 7

Architecture id 8

describes
the

architectures

Figure 5.5: The three architectures that belong to architecture category 3

128

Preprocessing
(optional)

Structure

selection

Structures

Text

Input

Structure
linearisation

Structure
induction

Figure 5.6: Representation of surface realiser architecture category AC4. We use the
grey box with sharp corners to denote the surface realiser and a yellow box with sharp
corners to denote that the structures are captured using a grammar.

Architecture category 4 (AC4): grammar engines The AC4 category, shown
in Figure 5.6, is used by most contemporary NLG systems. These systems rely on
grammar engines such as SimpleNLG [94] (or its adaptations for other languages such
as Tibetan [146]). The engine provides reusable language-specific rules for creating
syntactic structures and linearising them so as to obtain well-formed text. The choice
of which syntactic structure to use given the semantic input is not made by the re-
aliser. Instead, it is left to the discretion of the engineer, i.e., the realiser makes
no tactical decisions. As such, the input is a sentence plan (i.e., an underspecified
syntactic structure) or the intermediate representation and a choice of syntactic struc-
ture that is to be created by the realisation engine. Based on the input, control is
given to the engine to create the final syntactic structure and apply all necessary
linguistic rules. An example of a system that follows this architecture is [185], who
feed Content MathML (CMML) expressions to the sentence planner and it detects
which expression categories are found in the input. For instance, when provided
with the CMML expression for {x | x ≤ 0}, the planner detects that it is made up
of the relational, (arithmetic, algebraic, set), and conditional set. Using the prede-
fined rules for mapping each category to a syntactic structure, it creates a structure
for the complex category (i.e., the conditional set) where the internal nodes capture
the simple categories (i..e, the relational and (arithmetic, algebraic, set)), the child

129

nodes capture lemmas, and edges capture dependency relations between the various
nodes. This sentence plan is passed to the system’s coordinator, which then builds a
constituency-based syntactical structure using SimpleNLG-it [186] that corresponds
to the input and then linearises the tree into text.

Architecture category 5 (AC5): data-driven and integrated systems The
AC5 category, shown in Figure 5.7 does not have distinct module for making tactical
decisions to determine a natural language’s syntactical constraints, it has no explicit
sentential structure encoding and linearisation module. Instead, it makes use of
a data-driven model (most contemporary systems use a deep neural network) to
map some intermediate representation to natural language text. The first group of
systems that belong to this category do not have an identifiable surface realisation
component, even though they are modular. This is because their modules do not
focus on the criteria introduced in Section 5.2. For instance, Moryossef et al. [202]
trains a sequence-to-sequence model with attention for converting text plans to surface
text using the OpenNMT toolkit. A text plan is a list of sentence plans where each
sentence plan is a labelled directed graph where the nodes represent concepts and
direction edges represent predicates. So when the trained neural network is given
the sentence plan [(John, residence, London), (England, capital, London)], it may generate
“John lives in London, the capital of England” [202]. The authors generated the texts
using the probability distribution p(s|t) = ∏n

i=1 p(ti|t1, . . . , ti−1, s) where s = sn
1 and

t = tm
1 are the plans and output texts respectively. The value of p(ti|t1, . . . , ti−1, s) is

is approximated using the model described by Bahdanau, Cho, and Bengio [13], with
some minor modifications (see [202]).

Preprocessing
(optional)
 TextInput Probalistic

alignment

Figure 5.7: Representation of surface realiser architecture category A5. We use the
grey box with sharp corners to denote the surface realiser.

The only neural NLG system that has an identifiable surface realiser can be found
in [51]. However, its surface realiser is not data driven. Instead, it is fed templates
with abstract representations of verb phrases ans noun phrases. These templates are
produced by the preceding modules. It’s architecture belongs to category A6 and it
will be introduced in the following section.

130

Structure
Linearisation

Structures

Text

Input Structure
induction

Figure 5.8: Surface realiser architecture category AC6. We use the grey box with
sharp corners to denote the surface realiser and a blue box with sharp corners to
denote that the structures are captured using a template that may be grammar-
infused.

Architecture category 6 (AC6): simple declarative structures The AC6
architecture category is used by a few systems. Their realisers are responsible for a
single task, i.e., the linearisation of structures. For instance, Castro Ferreira’s [51]
realiser takes a template with underspecified verb and noun phrases. These templates
look like the one shown in Listing 5.1.

Listing 5.1: Example of a template found in Castro Ferreira et al.’s pipeline neural
system

1 Massimo Drago VP[...] play for DT[...] the club
2 SSD Potenza Calcio and his own club VP[...] be
3 Calcio Catania . He VP[...] be currently VP[...]
4 manage AC Cesena .

The realiser then uses rules4 to resolve the verb and noun phrase values oin order to
generate the final string. Another system whose realiser abides by the organisation
seen in AC6 can be seen in Gubbala et al.’s [102] work5. Unlike Castro Ferreira et
al.’s neural pipeline system, this one is not preceded by neural modules and it uses
RosaeNLG to generate text.

4https://github.com/ThiagoCF05/DeepNLG/blob/master/realization.py
5https://github.com/Alihussainladiwala/Citizen-Friendly-Report-of-diversitydatakids.

org/

131

https://github.com/ThiagoCF05/DeepNLG/blob/master/realization.py
https://github.com/Alihussainladiwala/Citizen-Friendly-Report-of-diversitydatakids.org/
https://github.com/Alihussainladiwala/Citizen-Friendly-Report-of-diversitydatakids.org/

5.4 Limitations for Nguni languages
The architectures that belong to the six categories are not appropriate for NCB
languages. Architectures that belong to categories AC1/2 are often used by domain-
independent realisers that require the creation of an input specification for purposes
of limiting the realiser’s semantic space, since they make tactical decisions the re-
sponsibility of the realiser. As a consequence, they require detailed input, hence,
making them difficult to easily accommodate in a new system [93, pg80]. This is
affirmed by the low adoption of large-scale grammar-based realisers that use archi-
tectures AC1/2 (e.g., KPML and AlethGen/GL) in modern NLG systems. These
control issues and the lack of large coverage grammars for NCB languages means
they are not appropriate.

Contemporary NLG systems use the architectures that belong to categories AC3/4/5/6.
Most domain specific systems that are designed for well-resourced languages make
use of AC4 architectures, especially when reliability is of concern. Recently, there
has been an uptake in NLG systems that follow AC5 architectures for such lan-
guages. However, such systems are rarely used in areas where reliability is important
since they sometimes exhibit hallucinations, incoherency, and degenerative repeti-
tions [110]. AC3 architectures have been used by a number of NLG systems that
support low-resourced languages, especially African languages. These four architec-
ture categories have a number of strengths:

• It has been demonstrated that it is possible to bootstrap an existing system for
a related language if they follow AC3 (see [44]).

• AC4 moves tactical decisions out of the realiser and leaves minimal tasks; hence,
does not require restrictive input specifications.

• Systems that abide by AC5 make use of automated means for mapping the
input to the output; hence, there is no need for hand-crafted modules whose
construction may be time-consuming.

• AC6 yields small-scale surface realisers that are supposed to be easy to use (e.g.,
[102])

Despite the aforementioned benefits, architectures that belong in categories AC3/4/5
are also unsuitable for NCB languages with respect to maintainability at the time of
writing for the following reasons:

132

• AC4 relies solely on grammar engines for structure realisation, hence, are un-
suitable for languages that are low low-resourced. IsiXhosa and isiZulu are
low-resourced and have limited up-to-date grammar literature; hence, it is not
feasible to develop large coverage grammar engines. Architectures that belong
to this category would only be viable and appropriate if a full-scale grammar
engine existed.

• The use of architectures that belong to category AC5 would only appropriate
for languages and domains where there exists parallel data to text resources to
train statistical/neural models. However, since isiXhosa and isiZulu do not fit
that description then it is not appropriate. This is demonstrated by the sizes of
datasets used to train statistical and neural systems, as given in Section 2.4.1.3.
Even if the relevant data were available, systems that make use of this archi-
tecture, especially when they use neural approaches, may not be appropriate in
certain circumstances since they are prone to generating text that is not asso-
ciated with the input (i.e., hallucinate) [243], drop relevant information [232],
and needlessly repeat text at the end of sentences [171].

The only promising architecture categories for the languages in question are AC3/AC6.
For instance, all existing NLG systems for Nguni languages have used architectures
that belong to category AC3. The only limitation with category AC3 is that it does
not yield maintainable and reusable software as it tightly-couples the linearisation
rules with the actual templates and makes tactical decisions the responsibility of the
realiser. For instance, consider the algorithm6 implementation for verbalising negated
simple existential quantification given in Listing 5.2.

Listing 5.2: Python implementation for verbalising simple existential quantification
in isiZulu (Source: [138])

1 def nexist_zu(sub,op,super):
2 nc1m = find_nc(sub)
3 nc2m = find_nc(super)
4 nc2 = strip_m(nc2m)
5 pl = plural_zu(sub,nc1m)
6 ncp = look_ncp(nc1m)
7 qca = look_qca(ncp)
8 rc = look_relc(nc2)
9 qc = look_qce(nc2)

10 rt = find_rt(op)
11 negsc = look_negsc(ncp)

6https://github.com/mkeet/GENIproject

133

https://github.com/mkeet/GENIproject

12 if rt[0] in 'aeiou':
13 negconjrt = negsc_vowel_vroot(rt,negsc)
14 else:
15 negconjrt = negsc + rt
16 return qca + ' ' + pl + ' ' + negconjrt + 'i' + ' ' + super + ' ' + rc

+ qc + 'dwa'

The algorithm implementation given in Listing 5.2 is one of the implementations of
the algorithms described in [136]. When the verbaliser is given the input Person ⊑
¬∃achieve.Task, it identifies that the relevant lexical items to use are umuntu ‘per-
son’, feza ‘achieve’, and umsebenzi onqunyiwe ‘task’ for the various elements, and
invokes nexist_zu (line 1). The above implementation starts by identifying and pro-
cessing the noun classes of the nouns associated with the sub and super concepts
(lines 2-4). It then pluralises the sub’s noun and identifies the plural’s noun class
(line 5-6). Once that information is obtained, it makes use of the retrieved noun
classes information to identify the relevant quantitative and relative concords (lines
7-9). Then, a negated verb is formed for object property (lines 10-15). Once all the
above elements are identified and formed, the algorithm them combines them to form
the sentence Bonke abantu abafezi umsebenzi onquyiwe oyedwa ‘All humans do not
achieve some task’ (line 16). In this scenario, the grammar-infused template and the
linearisation rules used to generate such text do not exist separately. In addition, the
decision to choose an appropriate template given some input is also the responsibility
of the realiser. From a re-usability perspective, this means that one cannot isolate
the templates and consider them for re-use.

Technically, systems that follow this architecture can be re-written such that they
abide by architecture A6. In such a redesign, the templates could be captured via a
separate language (à la RosaeNLG’s pug templates) and the choosing of an appropri-
ate template is done by a separate module. For instance, the above algorithm can be
split into a template and linearisation algorithm. The aforementioned hypothetical
template would look like the one given in Listing 5.3.

Listing 5.3: Hypothetical RosaeNLG template for simple existential quantification in
isiZulu

1 concateList
2 | +value('onke', {nc: getNC(sub)})
3 | +value(sub, {number: PLURAL})
4 | +value(op, {marker: NEGATIVE})
5 | #{super}
6 | +value('odwa', {nc: getNC(super)})

134

In the template above, concateList is hypothetical extension of the pugjs7 template
language. Its purpose is to order plain-text elements and may intelligently introduce
spaces between some special elements. We also make use of the value mixin from
RosaeNLG (lines 2-4, 6) with parameters that are currently not supported. Line 1
can be understood as invoking the value mixin in order for the template engine to
generate the appropriate form of onke ‘all’ depending on the noun class the noun
associated with the sub element. The rules for linearising the template can be moved
to separate and invoked in the manner shown in Listing 5.4.

Listing 5.4: Hypothetical JavaScript code for using a RosaeNLG template to verbalise
simple existential quantification in isiZulu

1 const rosaenlgPug = require('rosaenlg');
2
3 function verbalise(axiom):
4 ...
5 if nExistAxiomMustBeUsed:
6 vals = getLexicalValues(axioms)
7 nexist_zu(vals[0], vals[1], vals[1])
8
9 function nexist_zu(someSubVar , someOpVar , someSuperVar):

10 return lineariseTemplate(
11 'template.pug',
12 {
13 language: 'zu',
14 sub: someSubVar ,
15 op: someOpVar ,
16 super: someSuperVar
17 });
18
19 function lineariseTemplate(templateName , params)
20 return rosaenlgPug.renderFile(
21 templateName ,
22 params);

In the above hypothetical snippet, there is a function for choosing the appropriate
template when given an axiom (lines 3-7), a function for retrieving the template from
a file and passing the lexical items for axiom’s elements (lines 9-17), and a reusable
function for linearising templates that makes use of RosaeNLG’s engine (lines 19-22).
The use of a declarative template language results in templates that are separate from
the linearisation rules. As such, they can be reused without the need to recreate the
relevant rules.

While the use of a declarative template language increases the opportunity for re-
source reuse, it also introduces a challenge with respect to constraint checking. The

7https://pugjs.org/language/

135

https://pugjs.org/language/

simple templates and grammar-infused templates that were introduced in Chapter 2
have a number of constraints by definition. For instance, in both kinds of templates,
words and slots must be ordered and there must be at least one slot. In addition, one
is free to specialise the two concepts by introducing additional constraints. However,
since the template file will only specify the ‘what’ and not the ‘how’ in the hypo-
thetical template given in Listing 5.3, this opens up the possibility of reusing invalid
templates and that may have an impact of the viability of template re-use. This issue
could be solved through the following methods:

• Best practice guidelines: one can collect pitfalls seen in template reuse over
an extended period of time and create methodologies for template-reuse that
ensure that NLG engineers avoid those pitfalls. The disadvantage with this
approach is that it can only lead to a solution after one has spent an extended
amount of time observing pitfalls;

• Safeguards in system architecture: another approach is to make use of the pre-
sented analysis of existing NLG architectures to introduce changes that ensure
that the architecture has robust means for template constraint violation detec-
tion.

In the next section, we present our work on knowledge-guided architecture. It has
safeguards for constraint violations in templates (and possibly other methods used
for structure encoding).

5.5 Knowledge guided architecture
We develop the architecture by first specifying requirements, create an architecture
that meets the requirements, and then evaluate the result through a manual feature
comparison.

Requirements The requirements phase focuses on determining the high level char-
acteristics that should be in the architecture. These requirements are based on obser-
vations we have made on the evolution of realiser architectures in NLG, as discussed
in the previous section, and the needs of the languages in question. The high-level
design requirements are as follows:

• The sentential structure must be encoded via templates, which may be grammar-
infused, in order to support low-resourced languages. When necessary, it must

136

Figure 5.9: Functional view of the knowledge-guided architecture to generate text
from grammar-infused templates.

be possible to enrich the grammar-infused templates with task/context specific
grammatical knowledge.

• Knowledge regarding grammar-infused templates must be incorporated via ap-
plication ontologies as such a feature would allow us to be able to use semantic
technologies for purposes of template creation, automated reasoning to detect
inconsistencies, and comparison of template features. At first glance, it may
seem like the approach of capturing templates separate from a surface realiser,
but it is not. The use of grammar-infused templates requires a principled ap-
proach to encoding the necessary grammatical and template knowledge. Just
like there are formal theories for specifying grammars, a theory of templates is
required in order to make the combination sound.

• Tactical decisions should not be the responsibility of the surface realiser. Sim-
ilar to the proposal by SimpleNLG [94], tactical decisions should be left to
the discretion of each NLG engineer. Doing so avoids the control issues and
restrictive input formalisms found in dated wide-coverage tactical generators.

• Maintainability must be a key feature guiding the design of the architecture
since template-based systems have been criticized in the past for being difficult
to maintain. In particular, we are interested in modularity, componential re-
usability, and analysability.

• Statistical models should be usable as a means for the creation and selection
of templates when generating text. Moreover, the component for selecting a
template given some input must not be necessarily data-driven since the lan-
guage for which one is building an NLG system may not have sufficient corpora
to build a data-driven template selector. It must be possible to also make use
of the grammatical features afforded by grammar-infused templates to rank
possible templates (cf. only using surface text).

Architecture creation Based on the above requirements and our analysis of exist-
ing architectures, we have created the architecture shown in Figure 5.9. The tactical

137

decisions are moved out of the realiser similar to AC4. Structure creation is achieved
via templates, possibly grammar-infused. Moreover, for a faithful implementation of
this architecture, template knowledge (i.e., concepts, relationships, and constraints)
must be formalised in an ontology. Lastly, there is no prescription for the methods
that can be used for structure induction so rules or statistical models can be used.
Further, when generating text using an implementation of this architecture, there
might be multiple candidate grammar-infused templates, as a result of needing vari-
ety for text to be generated. The ranking component selects an appropriate template
from the candidates, which can be rule-based or data-driven. The selected template
and its associated input are then passed to the linearisation module for slot value
insertion, application of the necessary grammar rules, and finally producing surface
text.

The preprocessing and ranking modules are introduced and placed in a location that
differs from the architectures presented in Table 5.1 and categorised in Table 5.2.
This is done to satisfy the requirements pertaining to adding task-specific grammat-
ical information and using it to rank the possible templates. To demonstrate the
usefulness of such features, we use Braun, Reiter, and Siddharthan’s [37] SaferDrive
system. The system was originally created to generate reports to make drivers aware
and reduce their negative driving habits. One could extend the system for use by
insurance companies so that they may offer their version of reports to drivers or to
report to actuarials who set prices depending on driver behaviour. The same tem-
plates could be used, but the grammatical voice would be different. For instance,
templates for when a driver accesses the reports directly can be annotated in the ac-
tive voice through the pre-processing module, but for the insurance company it would
be annotated with passive voice. Consequently, when given multiple templates for
verbalising the message, say, drivingPeriod(distance, time), then the ranking module
would select the appropriate template given the context; e.g., when generating text
for the driver, it may generate “You drove 390 miles in 10 hours and 50 minutes
during the last week” [37, pg576] and for the insurance company it would then be
“390 miles were driven in 10 hours and 50 minutes during the last week by X” where
X is the name of the driver.

5.6 Architecture maintainability
In this section, we advance an a priori justification for maintainability. In particu-
lar, we are interested in the (ab/pre)sence following features: support for economical

138

Table 5.3: Comparison of the new architecture to other architectures. Abbreviations:
C = Computational grammar rule(s) reuse, O = Ontology formalised concepts and
relationships, S = Separation of surface realisation tasks. Legend: Green = sup-
ported, Black = not supported, and Dash = not applicable.

Architecture Category C O S
Proposed architecture -
0, 1, 3 AC1 -
2 AC1 -
4 AC2 -
5 AC2 -
9, 10 AC4 -
11 AC5 - - -
7 A5
8, 6 AC3
12 AC6

resource use (componential re-usability), having well defined template concepts and
relationships between the concepts (analysability), and ensures the separation of sur-
face realisation tasks (modularity). We do not include the other two maintainabil-
ity characteristics of [38], namely, modifiability and testability, since they require a
posteriori justification and there is no implementation of the architecture that has
been used over an extended period. Henceforth, we use the symbol C to refer to
our operationalisation of Componential re-usability, O to analysability of the knowl-
edge formalised in an Ontology, and S to modularisation of the Surface realisation
tasks.

Table 5.3 shows each architecture’s support of the maintainability features. We
demonstrate them with the isiZulu verbaliser [138]. Analysis of the verbaliser’s archi-
tecture (Arch. id. 7, category AC5) shows that it supports reusable grammar rules for
pluralisation and other rules can be added in the same fashion (yes to C). However,
the algorithms used to generate text encode the the selection of a specific template
for each quantifier and their corresponding linearisation rules (no to S). The ver-
baliser has a clear notion of what template concepts are allowed and how they relate
to each other, even though the constraints are not explicitly declared. In addition,
the permissible template concepts can be extended when needed in a similar fashion
to how Keet and Khumalo [134] extended the isiZulu patterns to support part-whole
relations. Unlike Keet and Khumalo [134], extension is not done in an ad hoc manner
and our templates are formalised via an ontology (yes to O).

139

Our architecture combines the strengths of AC1-6, as stated via our architecture re-
quirements, and supports the most maintainability features. It is the best option for
NCB languages since it supports the specified requirements and most of the maintain-
ability requirements (our operationalisation of [38]’s maintainability characteristics to
ensure that they are sensitive to the needs of NCB languages). It is not necessarily the
best choice for other languages, especially well-resourced languages, since it enforces
the use of templates.

It differs from architectures found in category AC4, the most popular architecture
category in extant systems, since it does not rely only on a grammar engine but places
templates at the center. It also introduces an ontology-based specification of tem-
plates. This allows NLG systems to use automated reasoners to detect inconsistencies
and also support interoperability in template-based systems.

It is not necessarily the best choice for other languages, especially resourced lan-
guages, since it enforces the use of templates. In cases where one wants to avoid
the use of templates then architectures belonging to AC4/5 may be best. This is
subject to availability of a grammar engine (AC4) and the toleration of degrada-
tion in textual coherence and correctness associated with data-driven NLG models
(AC4). Nonetheless, our architecture may still be used for such languages as it has
no prescript regarding structure induction. This is meant to tackle the challenge of
template creation and maintenance. As such, one can pursue data-driven techniques
in the same vein as [144] for template creation.

As can be seen in Table 5.3, it is not possible to mix and match features from ar-
chitectures in each category to satisfy all the maintainability features. For instance,
using A1 as an example, one cannot combine the best best features of architectures
0, 1, 3, and 2 in order to satisfy C, O, and S. This is primarily because none of the
architectures support the use of ontologies to capture template knowledge.

5.7 Value of template ontology
We will demonstrate the utility of the ontology for grammar-infused templates as
a means of facilitating the detection of logical inconsistencies in templates, sharing,
and the comparison of templates cf. ad hoc approaches. We will use demonstrative
soccer templates and slot fillers in the next section and Sanby et al.’s two systems to
demonstrate these benefits.

140

5.7.1 Inconsistencies

The benefit of using an ontology cf. just an XML schema definition language (or
similar language) is automated reasoning. That is, the knowledge in the ontology
(the TBox) can be combined with the templates (encoded as instances in the ABox)
to create a knowledge graph that then can be sent to an automated reasoner (e.g.,
HermiT OWL Reasoner [96]). Consider the following templates:
(a) Slot[player] Phrase[scored the third goal].
(b) Phrase[The goal at the 20th minute was] AltPhrasing(Phrase([

not offside]), Word([onside])).
(c) Phrase[The winning goal was the result of a header by] Slot[

player].
(d) Key[player], Value[Aardvarkis]

The templates above could be used to generate messages associated with the meaning
representation goalEvent(scorer, time, goalLineStatus, goalNumber) in some system(s). In
such a scenario, the ontology is used to declare the concepts to be used when creating
a template (à la schema). In this instance, we declare the concepts as Slot, Phrase,
Value, and AltPhrasing. The ontology can also be used to specify constraints. For
instance, to specify that templates must have at least one slot, i.e, Template ⊑ ⩾ 1
hasPart.Slot. It is the responsibility of the NLG engineer to create the templates
such as (a), (b), and (c) together with the key-value pair (d) to be inserted in the
templates. The templates can then be serialised using any number of formats (e.g.,
RDF/XML) and stored in a file.

The templates and their associated ontology, they can be loaded into the reasoner
and checked if they are consistent. If the ontology includes the aforementioned axiom
restricting the number of slots in a template, then it will detect that template (b)
is not a valid template because it does not contain any slots. For simple templates,
it may seem like this is an insignificant benefit since it has to be balanced against
the work required to create a template ontology. However, the ontology presented in
Chapter 4 supports simple templates; hence, there is no need to create a new template
ontology. Moreover, the ability to detect inconsistencies is vital for the grammar-
infused templates that are used to generate morphologically rich languages. In such
languages, there is a likelihood of making errors when defining their polymorphic
words.

Overall, it may seem like the ability to detect that template (b) is not valid, in
the given example, is not impressive. However, one be aware that when using

141

grammar-infused templates that have numerous embedded Computational Grammar
Rules (CGRs) then the number of restrictions found in the templates also increases.
As such, the opportunities for making mistakes also increase. The value of detecting
violations must be understood within that broader context.

5.7.2 Template comparison and reuse

Use of an ontology also facilitates sharing and comparing templates. For instance,
the two systems found in Sanby, Todd, and Keet [249] both verbalise Web Ontology
Language (OWL)’s disjoint classes axioms. One system does so using an Extensible
Markup Language (XML) template and another uses a Grammatical Framework (GF)
concrete grammar rule. We will demonstrate using Task ontology for CNL Templates
(ToCT), how they are isomorphic despite the difference in the language they use.

First, we begin by explaining the elements of the two templates; the XML template’s
Text object and the strings in the GF grammar rule are used to capture fixed texts
only. The difference between the approaches can be seen in line 4 of both listings
when they capture the fixed string nie ‘no’. Reusing the terminology from our soccer
example given in Section 5.7.1, it should be clear that XML and GF features serve
the same purpose as the Phrase concept. The XML template’s Object and GF’s
variables x and y are used as place-holders for different values that can be used. For
instance, line 3 in both listings marks the position that will be occupied by the name
associated with first the class that participates in the Disjoint axiom. If the input
is the axiom Disjoint(Animal Computer), then the position might be occupied by the
noun ‘animal’.

Listing 5.5: XML template for verbalising
OWL’s Disjoint axioms

1 <Constraint type="Disjoint">
2 <Text>'n</Text>
3 <Object index="0"/>
4 <Text>is nie 'n</Text>
5 <Object index="1"/>
6 <Text>nie</Text>
7 </Constraint>

Listing 5.6: GF template for verbalising
OWL’s Disjoint axioms

1DisjointClasses x y = { s=
2"'n "
3++x.s++
4"is nie 'n"
5++y.s++
6"nie"
7};

Analysis of the concepts used in the two types of templates shows that they have the
same meaning and function, as demonstrated in Figure 5.10. Specifically, the XML’s
Object and GF’s variables both refer to ToCT’s Slot concept. The Text and GF’s

142

Word Phrase

Slot

Object Text String
literal Variable

XML
DTD

elements

Grammatical
framework

types

Classes in the Task ontology for CNL Templates (ToCT)

XML templates Grammatical
framework templates

uses uses

aligns to aligns to

aligns to aligns to

Figure 5.10: Representation of the concepts used in the GF and XML templates and
how they relate to each other. The disparate specifications, in XML’s document type
definition (DTD) and Grammatical framework (GF), are aligned to classes found in
our ontology, ToCT.

strings literals are used to refer to ToCT’s Unimorphic word and a special case of the
Phrase concept.

ToCT’s common vocabulary shows that when the bells and whistles are removed from
the above listings, we are only left with equivalent fixed phrases and slots. Thus, the
two verbalisers can share the template, map it to their preferred serialisation, and
avoid resource duplication.

While one could develop an ad hoc meta-model for achieving this for Sanby, Todd,
and Keet’s [249] templates, the reliance on a ontology is a better approach because
of the benefits outlined in the previous section and the ontology may be used by
a wider set of template-based systems, especially if it abides by the Findable, Ac-
cessible, Interoperable, Reusable (FAIR) principles similar to the one presented in
Chapter 4. These capabilities are not possible in the other existing NLG/surface
realiser architectures because they either do not use templates or use ad hoc template
specifications.

143

5.8 Summary
In this chapter, we have presented a novel surface realiser architecture that moves
tactical decisions out of the realiser, relies on templates (possibly grammar-infused)
for encoding sentential structure, enforces the use of an ontology to formalise the
the templates’ concepts, relations, and associated constraints. It also supports can-
didate ranking via a module that may be data-driven. Unlike existing architectures,
especially those used by NCB language generation systems, our architecture is de-
signed to produce surface realisers that are easy to maintain since it supports our
operationalisation of component re-usability, analysability, and modularity.

In the following Chapter, we turn to the evaluation of our ontology (i.e., ToCT) and
the architecture via an implementation of text generation systems for isiZulu and
isiXhosa.

144

Chapter 6

Evaluation

We now turn to the evaluation of the architecture and its respective components for
data and knowledge to text generation systems.

The purpose of the evaluation is to demonstrate that the two created Natural Lan-
guage Generation (NLG) systems can capture complex templates and their generated
texts are well-formed. In addition, the generated texts are perceived favourably by
speakers of isiZulu and isiXhosa. This is demonstrated in scenarios where the tem-
plates are several polymorphic words and make use of the Task ontology for CNL
Templates (ToCT).

The rest of the chapter is structured such that Section 6.1 presents an overview of the
evaluation strategy taken, Section 6.2 presents implementation of grammar engines
for isiXhosa and isiZulu, the implementation of the linearisation module, and the error
detection module, Section 6.3 presents the the isiXhosa weather forecast generator
and the quality of its output, Section 6.4 presents the design the templates used for
the isiZulu text generator and the quality of generated questions, and Section 6.3
presents a discussion of the two systems with particular emphasis on ToCT’s scope
and quality of the generated text.

An early version of the work presented in Section 6.4 was published at the 3rd Inter-
national Workshop on Natural Language Generation from the Semantic Web [169].
We have updated it to improve readability and redesigned its architecture to use the
one presented in Chapter 5.

145

6.1 Evaluation strategy
Our evaluation uses a weather forecast text generator and ontology verbaliser as our
main instruments. We design a weather forecast generator for isiXhosa and an isiZulu
text generator used for verbalising an ontology’s TBox as validation questions. We
use two systems that belong to the data-to-text and knowledge-to-text categories
to demonstrate that the architecture, and its components, is capable of generating
text for both kinds of NLG system categories. Building such systems requires a
surface realiser. Since none currently exists for isiXhosa and isiZulu, before evaluating
our work using the aforementioned systems, we first present proof-of-concept Java
implementation of the various modules and artefacts needed for a surface realiser, as
listed in our architecture that was presented in Chapter 5.

In order to create an surface realiser that abides by the architecture, a number of
modules and resources are required. They are an ontology for specifying the sentential
structures (in casu templates), an optional method for ranking templates and slot
fillers, a module responsible for linearising sentential structures, and an error detection
module. We will only present proof-of-concept implementations of grammar engines,
linearisation modules, and error detection modules. We use ToCT, first presented in
Chapter 4, to capture sentential structure and since the ranking module is optional
and not the focus of this thesis, we omit it.

Our evaluation mode is subjective [24] and its purpose is to determine goodness and
correctness of the text produced by “the implementation [of the described compo-
nents, first described in Section 2, with respect to] grammatical features” [36, pg418].
We take a different approach Braun et al. [36] in that we do not compare generated
texts to a corpus to determine the scope of the artefacts and resources. We also do not
make use of the strategy seen in the Surface Realisation Shared Task [23] where one
compares the surface realiser’s output to some corpus using automated metrics such
as BLEU [218]. If we were to follow aforementioned approaches then we would need
to compare our generated text to a large and diverse “gold-standard corpus” [244].
Such a corpus would allow the identification of variations, their linguistic properties,
and the similarity of our generated text to the ‘gold-standard’ corpus. This is impor-
tant since the proposed artefacts are created to cover a variety of different domains.
However, there are no large (data/knowledge)-to-text datasets for the languages that
suitable for the task and creating them is not practical.

146

In order to make Braun et al.’s [36] evaluation approach more suitable for purposes,
we had considered downloading a large monolingual dataset (e.g., the aggregated
datasets presented in [240]), extracting templates and capturing them using ToCT,
creating mock data/knowledge to act as the input for each template, generating text,
then comparing the output to the original monolingual corpus. However, this was
not done since it is also not practical as the templates and mock input would still
need to be created manually. Unlike Braun et al.’s [36] test structures, our templates
cannot be created semi-automatically since there are annotations associated with the
aforementioned datasets or any other datasets.

As an alternative to Braun et al.’s [36] approach, we settled with documenting the
linguistic phenomena covered by the proof-of-concept implementations, using unit
testing for internal verification/validation of the correctness of the captured phe-
nomena, and relying on the subjective human judgements of the generated texts to
determine the correctness of the various linguistic phenomena.

6.2 Surface realiser implementation
We now turn to the implementation of the language-specific grammar engines, the
linearisation module, and error detection module. The components are used to create
the surface realiser, which can be used as part of a larger NLG system to generate
well-formed natural language sentences when given templates and slot fillers/values.
We will discuss the features covered by the isiZulu and isiXhosa grammar engines in
Section 6.2.1. We will also present the internal validation of the algorithm implemen-
tation.

6.2.1 Grammar engines

We created Java proof-of-concept implementations of grammar engines for isiZulu
and isiXhosa. The features that they currently support are as follows:

• Concord resolution: These rules retrieve the value of each type of concords based
on the provided noun class. These rules are implemented for both languages
and the concord values are taken from Bourquin [34].

• Copula resolution: These rules retrieve the value of a copula using a noun class
and, sometimes, the morpheme that is to follow the copula. These are currently
implemented only in the isiZulu engine. The current rules return w for noun
class 11, return ng if the next affix begins with u-, o-, and a-, and returns y in

147

all other cases. They are not implemented for isiXhosa because the chosen use
case did not require them. We prioritised rules to include in each engine based
on the considered use cases.

• Locative resolution: These rules retrieve the value of the locative using a noun
class and the morpheme that is to follow it. These are currently implemented
only in the isiZulu engine. The current implementation returns ku- for noun
class 1, 2, 1a, and 2a and returns e- for all other classes. These are also are not
implemented for isiXhosa because the chosen use case did not require them.

• Noun class resolution: This is an abstract interface for models/rules to be
used to determine the noun class of a specific string. In the isiZulu verbaliser
described in Section 6.4, a dictionary-based implementation is introduced.

• Morphophonological alternation: These rules are the various phonological con-
ditioning rules that were described in Section 2.1.3. These rules are implemented
for both languages.

The design of the engines took advantage of Java’s polymorphism for the two lan-
guages to rely on the same interface. This approach creates a single interface for
the linearisation module for all Nguni languages and avoids the creation of multiple
interfaces even though a single implementation suffices for all languages.

The created engines do not have comprehensive coverage, especially when compared
to SimpleNLG’s [94] coverage for English. Nonetheless, they are significant to Nguni
languages since they currently support linguistic processes at the word level. At
the time of writing, the limited coverage is not a limiting factor since the engines
are created as proof-of-concept auxiliary tools to support the text generators to be
introduced in Sections 6.3 and 6.4.

The proof-of-concept implementations (i.e., the grammar engines, error detection
module, and linearisation module) can be downloaded from https://github.com/
AdeebNqo/NguniTextGeneration.

6.2.2 Error detection

This module corresponds to the ‘Error detection’ module introduced in Section 5.5.
Its purpose is to identify logical inconsistencies in the templates and allow one to
filter out low quality templates.

148

https://github.com/AdeebNqo/NguniTextGeneration
https://github.com/AdeebNqo/NguniTextGeneration

We used the Java OWL-API1 library to read ToCT and its Tbox is then combined
with a template specified via ToCT, representing the ABox. The resulting knowl-
edge graph is used to detect inconsistencies via the FaCT++ 1.6.5 [270] automated
reasoner.

6.2.3 Linearisation

To generate text from templates specified using ToCT, we create the linearisation
algorithm that is presented as Algorithm 1. It is capable of linearising such templates
for any domain.

Algorithm 1 Algorithm for linearising a morphologically-enhanced simple template
Input T: template

SV: slot fillers
CM: language-specific concord mapping
MR: language-specific morphophonology rules

1: Initialise s to empty string
2: for lexItem ∈ getOrderedWords(T) do
3: if lexItem

.= Slot then
4: slotV alue = getSlotValue(lexItem, SV)
5: insertValueInSlot(lexItem, slotV alue)
6: if lexItem

.= PolymorphicWord then
7: govs = getGovernorValues(lexItem)
8: fillInConcordValue(lexItem, govs, CM)
9: wordV alue = getWordValue(lexItem, MR)

10: insertValueInWord(lexItem, wordV alue)
11: s← s+ getValue(lexItem)
12: return s

The algorithm works by creating an empty sentence and iteratively appending the
final form of each template fragment. Specifically, the main goal of the algorithm
is to insert the input slot fillers/values into their corresponding slots (lines 5 and
10). In the algorithm, we use the operator .= (lines 3 and 6) to mean “is of type”
(i.e. x

.= y means that x is of type y). Filling in those slots sometimes relies on the
construction of polymorphic words. We form polymorphic words by retrieving their
governor(s) and using them to retrieve the polymorphic word’s concord values (lines
6-10). Since concord values differ across languages, this retrieval process relies on a
language-specific mapping of the various concord values and their types (CM in line
8). Once they are retrieved and filled into a polymorphic word, the language-specific

1https://github.com/owlcs/owlapi/

149

https://github.com/owlcs/owlapi/

Create functions for
control structures

Read file

Parse template

render file

Initialise
NLG library

Get lang. specific
managers
Insert parameters

Call functions

Text

Template
file Parameters

Figure 6.1: The process used by RosaeNLG to generate text when given a template
file name and some associated parameters. Abbreviation(s): Language = lang.

Computational Grammar Rules (CGRs) responsible for phonological conditioning are
applied to create a well-formed word (line 9). The value of the word, slot, or other
template portion is then appended to the sentence to be generated (line 11). Finally,
the linearised sentence is produced (line 12).

The algorithm works in a way that is similar to RosaeNLG. The latter takes a tem-
plate and some parameters, some of which will be inserted into slots, following the
process demonstrated in Figure 6.1. RosaeNLG’s engine starts by initialising the li-
brary that has language rules and parses the template file. It then inserts the relevant
values passed as parameters into slots. Specifically, this is done by first retrieving
the language specific modules that capture various linguistic features and associat-
ing JavaScript functions to the control structures that were specified in the parsed
templates. Finally, the associated functions are all activated thereby linearising the
template to generate the final text. Our algorithm differs from RosaeNLG in that
it not tied to a fixed set of grammar rules, it includes the notions of concords to
make it suitable for Niger-Congo B languages, and it is documented vs. RosaeNLG’s
undocumented Typescript-only implementation.

150

Table 6.1: Templates to be used for testing the linearisation algorithm for isiXhosa
and isiZulu

Dependency Template Translation
Possessive ⟨noun⟩ ⟨C⟩madoda ⟨noun⟩ of men
Subjectival ⟨C⟩onke ⟨noun⟩ all ⟨noun⟩
Subjectival and objectival ⟨noun1⟩

⟨C1⟩ya⟨C2⟩hambisa
⟨noun2⟩

⟨noun1⟩ makes ⟨noun2⟩ leave

Phi/Mbi (Xh) ⟨noun⟩ ⟨C⟩mbi another kind of ⟨noun⟩
Long adjectival ⟨noun⟩ ⟨C⟩dala a ⟨noun⟩ that is old
Short adjectival (Xh) ⟨noun⟩ ⟨C⟩dala old ⟨noun⟩
Relative ⟨noun⟩

⟨C⟩hambileyo
⟨noun⟩ that has left

Enumerative ⟨C⟩nye ⟨noun⟩ one ⟨noun⟩

6.2.3.1 Validation

To validate our linearisation algorithm and its implementation, we created one tem-
plate for each type of dependency documented by [34, 192] of at most four words. We
limited the number to four so as to ensure that we can include the necessary parts
of speech and have succinct templates, but avoid introducing unintended errors. For
instance, for the enumerative dependency type, we used the following template where
C denotes a concord.
⟨C⟩nye ⟨noun⟩

The first item is used to form words of the kind umnye ‘one’. The complete list of
templates, and their English approximation, is given in Table 6.1.

We then randomly selected two noun classes (one singular and one plural) and selected
one noun per class for each language to use as slot fillers for the created templates. We
linearised the templates and checked if the resulting text is the same as the expected
correct text. In our random selection of nouns, we obtained noun class 10 and 1 for
isiXhosa and then used the words “izinja10” and “umntu1”. We obtained noun class 4
and 7 for isiZulu and then used the words “imifula4” and “isithombe7”. All templates
generated correct text.

Having created the various resources, we now turn to discuss the text generation
systems and the evaluation of their output.

151

Figure 6.2: Template schema used in the GALiWeather system (Source: [234])

6.3 IsiXhosa GALiWeather
The only existing weather corpus in isiXhosa is too small to be used to extract reli-
able templates. Building a new large corpus is impractical due to the unavailability of
such data [167]. As such, we have opted for adapting an existing multilingual weather
forecast generator to isiXhosa. Since weather forecast generation is a popular appli-
cation domain within NLG, we considered several systems’ corpus for adaptation to
isiXhosa. We searched for a weather corpus designed for general everyday in-land use
(cf. pollen forecasts [271] or marine weather forecasts [259]) using the list of weather
forecast generators found in [167] as a starting point. We eventually decided on using
GALiWeather [234] since it was created for generating forecasts for everyday in-land
use and its templates were accessible. The templates, and their corresponding NLG
system, were created for producing weather forecasts for various municipalities in
Spain.

6.3.1 Methods and Materials

We downloaded and translated the English GALiWeather templates [234] to isiX-
hosa.

A single English GALiWeather template may have multiple forms and fragments with
multiple forms – since its schema is such that the template allows multiple cases and
a template can have multiple optional text segments (see Figure 6.2).

We demonstrate GaliWeather’s templates using the one used to express changes in
temperate:

1 The temperatures will be

152

2 [norT] for this period of the year,
3 [minT] for the minimums and [maxT] for the maximums
4 compared to the expected for this time of the year,
5 which globally will be [norV]
6 although they [norO]
7 with minimums [minV]
8 although they [minO]
9 and maximums [maxV]

10 , despite they [maxO]
11 .

We have broken the template into multiple lines to improve clarity. The text segments
given in lines 2-10 are optional template segments. Please note that lines 3-4 capture
a single optional segment that has been broken into multiple lines due to its length.
Lines 1 and 11 are fixed template segments. These two segments are both captured
via the static type even though they differ linguistically (i.e., line 11 is punctuation
while line 1 is a phrase).

For each template, we created candidate templates such that they have at most one
form and their fragments also have at most one form. Specifically, we translated
the candidate English templates and their respective slot fillers into isiXhosa and
declared them using ToCT. Using the above-mentioned temperature template for
demonstration, we provide two of the twelve translated isiXhosa templates:

1 The temperatures will be [minT] for the minimums and [maxT] or the
2 maximums compared to the expected for this time of the year, which
3 globally will be [norV].
4
5 Iqondo eliphantsi lemozulu [minT] kwaye neqondo eliphezulu [maxT]
6 xa lithelekiswa netempritsha elindelekileyo kwelixesha enyakeni,
7 kodwa ndawo yonke itemprisha [norV]
8
9 The temperatures will be [minT] for the minimums and [maxT] for the

10 maximums compared to the expected for this time of the year, although
11 they [norO].
12
13 Iqondo eliphantsi lemozulu [minT] kwaye neqondo eliphezulu [maxT] xa
14 lithelekiswa netempritsha elindelekileyo kwelixesha enyakeni, kodwa
15 ndawo yonke itemprisha [norO].

We use the same notation as the GALiWeather templates for the isiXhosa templates,
instead of providing the ToCT specification since the above templates do not have
polymorphic words. The translation of the English template (lines 1-3) is given in
lines 5-7. Similarly, the translation of the second English template (lines 9-11) is given
in lines 13-15. In both language’s templates, the slots are captured via labels enclosed
using braces (e.g., minT in line 1 and norV in line 7). Both isiXhosa templates use

153

unimorphic words (e.g., Iqondo in line 5), phrases (e.g., eliphantsi lemozulu also in
line 5), slot (e.g., labelled minT in line 7), and punctuation (e.g., comma at the end
of line 6) but no polymorphic words. While the provided templates do not have
polymorphic words, other isiXhosa GALiWeather templates do. More precisely, the
number of slots and polymorphic words in each of the isiXhosa templates is shown
in Table 6.2. In the table, we use identifiers that were assigned to the templates.
The identifiers and names can be found in the templates downloadable from https:
//github.com/AdeebNqo/ToCT (We have also provided the correspondence between
the template name and identifier in Table B.1). There is no template assigned to id
8 as that number is assigned to the canned text.

Table 6.2: List of the slots and the number of polymorphic words in each template
and the types of slot fillers used. ∗ = Phrase has a polymorphic word. (Abbreviations:
Phrase = Phr., PolymorphicWord = Poly., UnimorphicWord = Uni., Subject concord
= SC, and Negated subject concord = NSC.)

Templ.
id

Slot(s) #
Poly.
frag-
ments

Slot filler
types

Slot filler
example

1 period1Slot, coverage2Slot,
period3Slot, coverage3Slot,
coverage1Slot, period2Slot

2 Phr., Uni. esiphakathini
‘towards the
middle’

2 coverageSlot 0 Phr., Uni. elithe
gqabagqaba
ngamafu ‘foggy’

3 period5Slot, coverage5Slot,
period4Slot, coverage4Slot,
period6Slot

2 Phr., Uni. ekuqaleni ‘at
the beginning’

4 coverage5Slot, period4Slot,
period7Slot, coverage4Slot,
period6Slot

2 Phr., Uni. elisibakeleyo
‘covered’

5 coverage2Slot, coverage1Slot 0 Phr., Uni. elimathumb’
antaka ‘cloudy’

6 coverage3Slot, coverage2Slot,
coverage1Slot

1 Phr., Uni. elihle ‘clear’

7 coverage5Slot, coverage4Slot,
coverage6Slot

0 Phr., Uni. elisibakeleyo
‘covered’

9 maximumTempSlot, varia-
tionSlot, minimumTempSlot

0 Poly.,
Phr.∗

[SC]phantsi
kakhulu ‘very
low’

154

https://github.com/AdeebNqo/ToCT
https://github.com/AdeebNqo/ToCT

Table 6.2: List of the slots and the number of polymorphic words in each template
and the types of slot fillers used. ∗ = Phrase has a polymorphic word. (Abbreviations:
Phrase = Phr., PolymorphicWord = Poly., UnimorphicWord = Uni., Subject concord
= SC, and Negated subject concord = NSC.)

Templ.
id

Slot(s) #
Poly.
frag-
ments

Slot filler
types

Slot filler
example

10 maximumTempSlot, oscila-
tionSlot, minimumTempSlot

0 Poly.,
Phr.∗

[SC]qhelekile
‘normal’

11 maximumTempSlot, mini-
mumTempSlot, minimum-
VariationSlot

0 Poly.,
Phr.∗

[NSC]natshintsho
‘without
changes’

12 maximumTempSlot, mini-
mumTempSlot, minOscila-
tionSlot

0 Poly.,
Phr.∗

[SC]qhelekile
‘normal’

13 maximumTempSlot,
maxVariationSlot, mini-
mumTempSlot

0 Poly.,
Phr.∗

[SC]iphezulu
‘high’

14 maximumTempSlot, max-
OscilationSlot, mini-
mumTempSlot

0 Poly.,
Phr.∗

[SC]iphantsi
‘low’

15 tempSlot, norVariationSlot 0 Poly., Phr. [NSC]natshintsho
‘no change’

16 tempSlot, oscilationSlot 0 Poly., Phr. [SC]iphantsi
‘low’

17 tempSlot, minimumVaria-
tionSlot

0 Poly., Phr. [SC]hla nga-
mandla ‘in
notable de-
crease’

18 tempSlot, minOscilationSlot 0 Poly., Phr. [SC]iphezulu
‘high’

19 tempSlot, maxVariationSlot 0 Poly., Phr. [SC]nyuka kanc-
inci ‘in slight in-
crease’

20 tempSlot, maxOscilationSlot 0 Poly., Phr. [SC]phezulu
kakhulu ‘very
high’

21 windSlot, timeSlot 1 Phr., Uni. amandla
ukusuka
entshona
‘strong from
the West’

155

Table 6.2: List of the slots and the number of polymorphic words in each template
and the types of slot fillers used. ∗ = Phrase has a polymorphic word. (Abbreviations:
Phrase = Phr., PolymorphicWord = Poly., UnimorphicWord = Uni., Subject concord
= SC, and Negated subject concord = NSC.)

Templ.
id

Slot(s) #
Poly.
frag-
ments

Slot filler
types

Slot filler
example

22 time2Slot, windSlot,
time1Slot

1 Uni., Phr. emini ‘in the af-
ternoon’

23 wind3Slot, wind4Slot,
time5Slot, time4Slot

2 Phr., Uni. ngolwesine ‘on
Thursday’

We include a demonstration of a template that includes a polymorphic word here:
1 English template: There will be [cl1] skies [p1], [cl2] [p2] and [cl3]
2 [p3] of this term
3 IsiXhosa template: Kuzakubakho izulu [cl1] [p1], [cl2] [p2] kunye /cl3/
4 [p3] /xesha/

In the above snippet, we use the notation introduced in the previous snippets. How-
ever, since there are polymorphic words, we also introduce new notation in the form
of items enclosed with slashes to denote such words. Specifically, in the isiXhosa tem-
plates, the word corresponding to coverage (labeled “cl3”) and the word for clarifying
which period of the term is referred to (labeled “xesha”) are captured via, or as part,
of a polymorphic word. The final value of the first polymorphic word, /cl3/, depends
on the value inserted into the slot since the phonological conditioning rules may pro-
duce different kinds of values. All the slot fillers translated from the GALiWeather
dataset that can be inserted into the polymorphic word’s slot start with “eli-”, e.g.,
elithe gqabagqaba ngamafu or elisibakeleyo. Hence, the application of the phonological
conditioning rules produces the same kind changes to the connecting value found in
the polymorphic word’s affixes. Technically, it is possible that other slot fillers that
do not lead with “eli-” could be used, even if unlikely, and in such cases, the phono-
logical conditioning rules may produce different connecting values. The polymorphic
word, /cl3/, is specified using ToCT in the following manner:

1 <coverage3 > a toct:PolymorphicWord
2 ; co:index "9"^^xsd:positiveInteger;
3 ; toct:hasPart <na>, <coverage3Slot >
4 ; toct:hasFirstPart <na>
5 ; toct:hasLastPart <coverage3Slot >
6 ; toct:hasNextPart <period3Slot > .
7

156

8 <na> a toct:UnimorphicAffix
9 ; toct:hasValue "na"^^xsd:string

10 ; co:index "1"^^xsd:positiveInteger
11 ; toct:hasNextPart <coverage3Slot > .
12
13 <coverage3Slot > a toct:Slot
14 ; toct:hasLabel "cl3"^^xsd:string
15 ; co:index "2"^^xsd:positiveInteger .

Similarly, the value of the /xesha/ polymorphic word is governed by the noun inserted
into the slot denoted [p3]. For instance, when the locative nouns ‘ekuqaleni15’ and
‘esiphakathini7’ are each inserted into the slot, then the final word of xesha could
take the forms kwemini and emini, respectively. Using the ToCT, /cl3/ is specified
in the following manner:

1 <xesha> a toct:PolymorphicWord
2 ; toct:reliesOn <period3Slot >
3 ; toct:hasFirstPart <possXesha >
4 ; toct:hasLastPart <ministem > .
5
6 <possXesha > a toct:Concord
7 ; toct:hasLabel "possC"^^xsd:string
8 ; co:index "1"^^xsd:positiveInteger
9 ; cam:hasConcordType <possConType >

10 ; toct:hasNextPart <ministem > .
11
12 <ministem> a toct:Root
13 ; toct:hasValue "imini"^^xsd:string
14 ; co:index "2"^^xsd:positiveInteger .

In the above snippets, the prefixes toct, co, cam correspond to ToCT, the Collections
Ontology (CO), and Concord Annotation ontology, respectively.

The translation resulted in 22 isiXhosa templates and 1 canned text sentence. The
ToCT-captured templates can be downloaded from https://github.com/AdeebNqo/
ToCT. Using the complete list of templates, we generated 22 sentences by randomly
selecting slot fillers and ensuring they are inserted in the semantically correct order.
The complete list of texts and their ids are provided in Appendix B.

The 22 generated sentences and the single translated canned text sentence are pack-
aged into a survey available with English or isiXhosa instructions. In the survey,
respondents were asked to report their isiXhosa proficiency and asked to rate the
fluency and grammaticality of the provided texts on a 5-point scale. By fluency, we
refer to the evaluation of the text’s goodness through subjective human judgements
that are absolute à la [293], as classified by [24]. By grammatically, we refer to “ad-
herence to rules of syntax [...] and overall legitimacy as an [isiXhosa] sentence” [106],

157

https://github.com/AdeebNqo/ToCT
https://github.com/AdeebNqo/ToCT

an evaluation of the text’s correctness through subjective human judgements that are
absolute [24].

In the survey, a single attention check question was included and assigned the identifier
T3. The purpose of the attention check is to improve the quality of the responses
by identifying participants who are not diligent [215]. The English (lines 1-3) and
isiXhosa (lines 5-7) texts used as the checks are as follows:

1 This is not a question to be evaluated. It is a question to test whether
2 you are paying attention. For this question only, please select
3 "Unclear" for fluency and "Grammatical" for grammaticality.
4
5 Lo ayingombuzo ekufuneka uvavanywe. Ngumbuzo wokubona ukuba uyayifunda
6 na imibhalo. Kulombuzo qha, sicela ukhethe u "Andinamkhethe" kubuciko
7 kwaye ukhethe u "Igrama irongo kakhulu" kukuthobela igrama.

Participants were recruited via a post on the author’s account on Twitter2, the so-
cial media website. Only isiXhosa speakers were invited to participate, and the call
encouraged participants to recruit other respondents, as a way of snowball sampling
[97]. By snowball sampling, we refer to the procedure of sampling individuals from
some population and also asking them to extend an invitation to other individuals
from the same population to participate. The resulting judgements were analysed
using the median and inter-quantile ranges.

The English and isiXhosa instructions that were provided to participants during the
surveys are also listed in Appendix B.

6.3.2 Results

There were 18 total responses, of which 16 respondents took the survey with English
instructions and 2 with isiXhosa instructions. All respondents were self-reported as
L1 isiXhosa speakers. Both the respondents who chose isiXhosa instructions passed
the attention check and of the 16 respondents who chose English instructions, 2 failed
the attention check. Henceforth, the results will only be presented for the 16 who
passed the attention check and the attention check (T3) will not be used. As can
be observed in Figure 6.3, there are a few texts judged as not being fluent by the
respondents. The fluency and grammaticality judgements are presented in Figure 6.3
and Figure 6.4 respectively.

Out of the 23 judged texts, 13 were perceived as fluent and grammatically correct
while there is no consensus on the rest. The reasons for the lack of a consensus

2https://twitter.com/

158

https://twitter.com/

Figure 6.3: Fluency judgements for each of the 23 weather forecast texts

Figure 6.4: Grammaticality judgements for each of the 23 weather forecast texts

159

are likely to be difficulties judging some texts without surrounding text that pro-
vide context and differences in dialects. These issues will be discussed in detail in
Section 6.5.

The median (fluent) and inter-quantile ranges (between 0.25 - 2) show that respon-
dents judged 13 sentences as fluent (T0, T1, T7, T10, T11, T12, T13, T14, T15, T17,
T19, T21, and T22). The aforementioned texts are as follows:

1 T0: Kuzakubakho izulu elisibakeleyo ekupheleni , elithe gqabagqaba
2 ngamafu esiphakathini kunye nelimathumb ' antaka ekupheleni kwemini
3 T1: Kuzakubakho izulu elisibakeleyo jikelele imini yonke
4 T7: Kuzakubakho izulu elihle kubekho namaxesha apho kukho izulu
5 elimathumb ' antaka okanye elisibakeleyo
6 T10: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye neqondo
7 eliphezulu liphantsi kakhulu xa lithelekiswa netempritsha
8 elindelekileyo kwelixesha
9 enyakeni, kodwa ndawo yonke itemprisha izakunyuka isehla

10 T11: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye iqondo
11 eliphezulu liphantsi kakhulu xa lithelekiswa nethemprisha
12 elindelekileyo kwelixesha enyakeni, iqondo eliphantsi lona
13 linyuka ngamandla ekuhambeni kwexesha
14 T12: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye iqondo
15 eliphezulu liphantsi kakhulu xa lithelekiswa nethempritsha
16 elindelekileyo kwelixesha enyakeni, nangona amaqondo
17 azakunyuka esehla ekuhambeni kwexesha
18 T13: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye iqondo
19 eliphezulu liphezulu kakhulu xa lithelekiswa nethemprisha
20 elindelekileyo kwelixesha enyakeni, kwaye iqondo eliphezulu
21 linyuka kancinci -kancinci ekuhambeni kwexesha
22 T14: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye iqondo
23 eliphezulu liphantsi kakhulu xa lithelekiswa nethemprisha
24 elindelekileyo kwelixesha enyakeni, nangona amaqondo azakunyuka
25 esehla
26 T15: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
27 kodwa ndawo yonke itemprisha inyuka ngamandla
28 T17: Amaqondo obushushu azakuba ephezulu kakhulu ngelixesha enyakeni,
29 iqondo eliphantsi lona lihla kancinci
30 T19: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
31 kwaye amaqondo aphezulu anyuka kancinci ekuhambeni kwexesha
32 T21: Silindele umoya onamandla amakhulu ukusuka emantla ngomvulo
33 T22: Silindele imimoya ezakuba namandla amakhulu ukusuka emzantsi-mpuma
34 ngomvulo

Likewise, the median (grammatically correct) and inter-quantile ranges (between 0 -
2) show that respondents judged 13 texts as being grammatically correct (T0, T1, T4,
T6, T12, T13, T14, T15, T16, T17, T19, T22, and T23). The texts that are judged
as being both fluent and grammatically correct have variable lengths, they are direct,
and have no vague fragments. This can be seen in the following texts, repeated here
with English translations:

160

1 T14: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye iqondo
2 eliphezulu liphantsi kakhulu xa lithelekiswa nethemprisha
3 elindelekileyo kwelixesha enyakeni, nangona amaqondo azakunyuka
4 esehla
5 English trans: The temperatures will be very high for the minimums and
6 very low for the maximums compared to the expected for this time
7 of the year, even though they will oscillate
8
9 T22: Silindele imimoya ezakuba namandla amakhulu ukusuka

10 emzantsi-mpuma ngomvulo
11 English trans: We expect winds which will be strong
12 from the South-East on Monday

The first text (T14) is generated by a template that does not have a polymorphic
word. However, its first slot is inserted with a polymorphic word whose final value
is liphezulu ‘high’ since it is in agreement with Iqondo ‘temperature’. The relevant
fragment of the template that generated T4 is illustrated in the following listing:

1 <temp6Template > a toct:Template
2 ; toct:supportsLanguage <cpt_xhosa >
3 ; toct:hasPart <qondo1>, <phantsi>,
4 <minimumTempSlot >, <kwaye>, <qondo2>, <phezulu>,
5 <maximumTempSlot >, <thelekiswa >, <comma>, <ngona>,
6 <qondo3>, <maxOscilationSlot >
7 ; toct:hasFirstPart <qondo1>
8 ; toct:hasLastPart <maxOscilationSlot > .
9

10 <cpt_xhosa > a mola:Dialect
11 ; mola:isFamily <isiXhosa > .
12
13 <qondo1> a toct:UnimorphicWord
14 ; toct:hasValue "Iqondo"^^xsd:string
15 ; co:index "1"^^xsd:positiveInteger
16 ; toct:hasNextPart <phantsi>
17 ; toct:controls <i>
18 ; ncs:hasNounClass <nounClass5Type > .
19
20 <phantsi> a toct:Phrase
21 ; toct:hasValue "eliphantsi lemozulu"^^xsd:string
22 ; co:index "2"^^xsd:positiveInteger
23 ; toct:hasNextPart <minimumTempSlot > .

The second example text (T22) is generated by a template with 3 fragments: a phrase
with three unimorphic words (i.e., Silindele imimoya ezakuba), a polymorphic word
that requires phonological conditioning to form its final form (i.e., na⟨wind+direction⟩),
and a slot (i.e., ⟨day⟩).

When we define Disagree = {1,2}, Undecided = {3}, and Agree = {4,5} for both the
collected fluency and grammaticality judgements, then we see that there is no evidence
that the other sentences are perceived as being unclear or grammaticality incorrect,

161

due to absence of consensus among the survey participants. When analysing the
results, we see that a Student’s t-test shows that there is no significant difference in
the number of negative and neutral judgements vs. positive judgements for the texts
for both fluency (α = 0.05, p = 1) and grammaticality (α = 0.05, p = 0.509).

6.3.3 Summary

Table 6.2 shows that a number of templates (32%) have polymorphic fragments;
therefore, they are outside the competence of English-oriented templates. While the
rest of the templates (15/22) do not have a polymorphic fragment, Table 6.2 shows
that of those 15, only three (template identifiers 2, 5, and 7) do not use polymorphic
words as slot fillers. Such slot fillers are not possible in simple templates. The use
of polymorphic words, as slot fillers, can be seen with the words azakunyuka and
awazokunyuka, as they are produced from the same slot filler since they have the
same lemma -nyuk- ‘rise’. Using polymorphic words for slot fillers stands in contrast
with listing all surface form variants, as done in lexicographic models such as Bantu
Language Model (BLM) [31] or English-oriented template models. Instead, the final
surface form of the word is determined by the surface realiser.

6.4 OWL Simplified isiZulu
Having built a data-to-text generation system for isiXhosa, we now turn to build
a knowledge-to-text generation system for isiZulu using ToCT and the rest of the
modules. Specifically, we demonstrate that the created architecture and its actualised
components generate good quality questions from an ontology.

There are no existing isiZulu Controlled Natural Languages (CNLs) that can be for
question generation from an ontology. As such, we designed a CNL to be used by the
isiZulu verbaliser in an incremental and bottom-up fashion. We began by selecting
the first set of OWL constructors to support by re-purposing an existing English
CNL, rewriting its templates into yes/no question templates, and translate them into
isiZulu. The chosen CNL is Web Ontology Language (OWL) Simplified English [225].
The OWLSIZ templates we have created from them are provided in Table 6.3. In
Table, we use a box around a sequence of affixes to illustrate a decomposed word
whose underlying morphemes are provided sequentially. We also use an arrow from
a concord to the noun that controls its value. In template 10, for instance, the third
word is made up of two affixes: the subject concord and -odwa. The subject concord’s

162

value depends on the noun class of the value inserted into the class slot (i.e., {C}) and
there are 17 such noun classes in isiZulu. When the subject concord’s value is inserted
then phonological conditioning may be applied when combining the two affixes since
isiZulu does not permit consecutive vowels. For instance, when noun class 15’s ku is
appended to odwa we obtain kodwa.

Table 6.3: List of English question templates and OWL Simplified IsiZulu templates.
Abbreviations: I = individual, C = class, DP = data property, SC = subject concord,
COP = copula prefix, and RelC = relative concord (Adapted and translated from
OWL Simplified English [225])

- Axiom IsiZulu template and English approximation

1. SubClassOf(C1 C2)
Ingabe {SC} onke {C1} {SC} {COP} {C2} ?

Is every {C1} a(n) {C2}?

1.1 SubClassOf(C1 CE)
Ingabe {SC} onke {C1} {SC} {CE} ?

Does/Is every {C1} {CE}?

2 ClassAssertion(C I)
Ingabe {I} {SC} {COP} {C} ?

Is {I} a(n) {C}?

3 ObjectProperty
Assertion(OP I1 I2)

{I1} {SC} {OP} {I2} ?

{I1} {OP} {I2}?

4 Equivalent
Classes(C1 C2)

Ingabe noma yi {OC} phi {C2} {SC} {COP} {C1} ?

Is every {C2} a(n) {C1}?

5 Disjoint
Classes(C1 C2)

A {SC} kho yini {C1} {RelC} {Cop} {C2} ?

Is there no {C1} that is a(n) {C2}?
6 ObjectSome

ValuesFrom(OP C)
{OP} {C}?
{OP} a(n) {C}?

6.1 ObjectSome
ValuesFrom(OP CE)

{OP} {CE} ?

{OP} a {CE}?

6.2 ObjectSomeValues
From(OPnoun C)

yi {OP} {LocPre} {C} ini ?

{OPnoun}s a(n) {C}?

163

Table 6.3: List of English question templates and OWL Simplified IsiZulu templates.
Abbreviations: I = individual, C = class, DP = data property, SC = subject concord,
COP = copula prefix, and RelC = relative concord (Adapted and translated from
OWL Simplified English [225])

- Axiom IsiZulu template and English approximation

6.3 ObjectSomeValuesFrom
{OP} {LocPre} {C} ini ?

-

6.4 ObjectSome
ValuesFrom(OPnoun C)

yi {OP} {LocPre} {C} ?

{OPnoun}s a(n) {C}?
7 ObjectHasValue(OP I) {OP} {I}?

{OP} {I}?
8 DataProperty

Assertion(DP I L)
Ingabe {I} {DP} {L}?
Does/Will/Did/Is {I} {DP} {L}?

9 DataHasValue(DP L) {DP} {L}?
{DP} {L}?

10 ObjectAll
ValuesFrom(OP C)

{OP} {C} {SC} odwa

{OP} only {C}?

11 ObjectExact
Cardinality(N OP C)

{OP} {C} {RelC} yi- {N} ncamashi/ngqo ?

{OP} exactly {N} {C}?

12 ObjectMin
Cardinality(N OP C)

{OP} {C} {RelC} ngaphezulu kuka-{N} ?

{OP} at least {N} {C}?

13 ObjectMax
Cardinality(N OP C)

{OP} {C} {RelC} mbalwa ku-{N} ?

{OP} at most {N} {C}?

Some of the constructors shown in Table 6.3 have different templates used in certain
circumstances. Specifically, Template 1 verbalises SubClassOf axioms where the range
is a named class. Template 1.1 handles cases where the range is a class expression.
There are four different templates for the ObjectSomeValuesFrom class expressions.
Template 6.4 is applicable where the object property is a noun and the OWL class
belongs to noun classes 1, 1a, 2, and 2a. Template 6.3 is applicable when the object
property is the containment part-whole relation [134] and template 6.2 is used when
the object property is a noun. Template 6 and 6.1 are applicable when the range is an
OWL class and class expression respectively. The verbaliser has a rule that chooses

164

an appropriate template when given a class expression.

The created isiZulu templates use concords (consult Section 2.1 for a detailed cate-
gorisation of concords), copulas and locative prefixes. These are polymorphic affixes
whose values change depending on the noun in which they are found in the case of
the locative prefix and copula or due another noun in the sentence in the case of
concords. To illustrate use of the isiZulu templates, then let us consider how to ver-
balise an axiom of the type A ⊑ B, e.g., ihebhu ⊑ umuthi and in OWL functional
syntax style, SubClassOf(ihebhu umuthi). Template 1 would be chosen, since the
B in the position of C2 is a named class. One would then obtain the following text
Ingabe lonke ihebhu lingumuthi? where the concords and copula are underlined. The
concords are the lo- (from li- + -o-) and li- components of the highlighted text, which
are governed by the noun class of the first noun, ihebhu ‘herb’, and the copula is
the -ng- component, which is determined by the first character of the second noun,
u-.

6.4.1 Verbaliser implementation

We designed the OWLSIZ verbaliser software to abide by the architecture diagram
given in the architecture diagram shown in Figure 6.5. The initial implementation
used the architectured described in [169]. Both implementations use Java and the
OWL API3 library to parse the ontology. We will discuss the structure selection and
realisation components in the remainder of this section.

OWL
API

Ontology
parser

Structure
selection,

slot filler processing

nncPairs templates

Phonological
conditioning rules

Ontology
file

IsiZulu

questions

Used by

Process flow

Realiser

Figure 6.5: Software architecture used by the OWLSIZ verbaliser (Abbreviations:
Processing = Proc. and Phonological conditioning = Phon. cond.)

3https://github.com/owlcs/owlapi

165

https://github.com/owlcs/owlapi

The structure selection module has a few rules for deciding which template to use
for each supported axiom type. Out of all the supported OWL constructs, only one
logical axiom (SubClassOf) and one class expression (ObjectSomeValuesFrom) have
multiple template forms. A single rule is used by the verbaliser to choose between the
multiple forms of templates for each constructor type. The module also does some pre-
processing of the slot fillers extracted from the input. This entails basic cleaning, such
as removing underscores and replacing them with spaces, and noun class resolution
for the nouns. It also uses nncPairs, the file nncPairs.txt, for determining whether
an object property is or contains a noun and to retrieve the noun class of the noun,
which is reused from Keet et al.’s [135] isiZulu verbaliser.

The realisation engine used by the realiser also implements a noun class identifier.
The current implementation of the module also uses the nncPairs.txt4 from Keet et
al.’s [135]. We extended the file by adding 8 words (we use subscripts to denote
each word’s noun class) : umakhalekhukhwini ‘cellphone’, uZola ‘Zola’, iNokia 3310
‘Nokia 3310’, ifoni ‘phone’, umfundi ‘learner/student’, ukubhukuda ‘swimming’,
ihebhu ‘herb’, and umdlalo ‘game’. We also changed the noun class annotations of 6
nouns: ufulawa3a ‘flour’, amanzi6 ‘water’, irhaba9 ‘Common sowthistle’, ivazi9 ‘vase’,
ithiyetha yokuhlinzela9 ‘operating theather’, and indoda5 ‘man’ as we disagreed with
their original classification.

The surface realiser takes a template and slot fillers, captured via ToCT, and inserts
the fillers into their respective slots, resolves the values of concords, locatives, and
copulas in polymorphic words, and then forms words by appending the affixes together
while relying on isiZulu phonological conditioning rules taken from [204, 252, 227, 275,
222].

6.4.2 Evaluation procedure

In order to evaluate the quality of questions generated by the verbaliser, we make use
of the test ontology presented in [135]. We extended the ontology’s 82 logical axioms
with 12 axioms to ensure coverage for OWLSIZ: ClassAssertion (2), ObjectProp-
erty (2), ObjectPropertyAssertion (1), EquivalentClasses (1), Data Property
(1), ObjectAllValuesFrom (1), ObjectExactCardinality (1), Object MinCardi-
nality (1), DataPropertyAssertion (1), and ObjectMaxCardinality (1). This

4https://raw.githubusercontent.com/mkeet/GENIproject/master/isiZuluVerbaliser/
OntologyVerbaliser_Zu/nncPairs.txt

166

https://raw.githubusercontent.com/mkeet/GENIproject/master/isiZuluVerbaliser/OntologyVerbaliser_Zu/nncPairs.txt
https://raw.githubusercontent.com/mkeet/GENIproject/master/isiZuluVerbaliser/OntologyVerbaliser_Zu/nncPairs.txt

update resulted in an ontology with 91 axioms (it is not 94 because 3 axioms were
used to constrain the existing axioms).

For internal evaluation, we verbalised the ontology and categorized the input state-
ments into verbalisable and unverbalisable. These two classes capture our verbaliser’s
supported and unsupported axioms. All the unsupported axioms were excluded from
the final evaluation. Of those excluded axioms, there were 15 statements produced by
them, and there were two main causes why they were categorised as unverbalisable.
Ten statements had nouns whose noun classes were unresolved by verbaliser’s noun
class identifier. The problematic nouns included “isampula igazi”, obtained from the
test ontology’s isampula_igazi, which ought to have been “isampula yegazi” (‘blood
sample’) in noun class 5. Second, the other five statements included unsupported ax-
iom types (e.g., ObjectComplementOf). This is a consequence of using OWL Simplified
English as a guide for limiting the scope. The complete list of unverbalisable input
is given in Table 6.4.

For each of the verbalisable axioms, we analysed their corresponding text to determine
whether there are phonological conditioning errors, morphological agreement errors,
and any other grammatical error. The surface realiser’s error detection module did
not find any logical inconsistencies. Out of the total 91 axioms, 76 were verbalisable
axioms and their corresponding texts, 75 texts are free of morphological agreement er-
rors, phonological conditioning errors, or any other grammatical errors. For instance,
template 5 is selected when verbalising DisjointClasses(isidlanyama isidlazitshalo) and
that can be seen in the following snippet:
Input : DisjointClasses(isidlanyama isidlazitshalo)

Template : A {SC} kho yini {C1} {RelC} {Cop} {C2} ?

IsiZulu output : asikho yini isidlanyama esiyisidlazitshalo?
English approx. output : Is there no carnivore that is a herbivore?

In the isiZulu output, isidlazitshalo is prefixed with esi- and -y- where esi- is a relative
concord that would have a different value if isidlanyama was not used (e.g, it would be
eli- if a noun that belong to class 5 was used instead). Similarly, -y- is the copulative
prefix value and if the value inserted into {C2} had u, o, or a for a preceding vowel
then ng- would be used instead.

For external evaluation, we verbalised the ontology and packaged the resulting ques-
tions into a survey. Participants were recruited via snowball sampling [97] using

167

Table 6.4: List of OWL input statements that are not verbalisable by the system and
the reasons of the inability

Input Reason
SubClassOf (<testonto#isampula_igazi> Ob-
jectSomeValuesFrom (<testonto#isiqephu>
<testonto#igazi>))

Noun class of “isampula
igazi” cannot be resolved

SubClassOf (<testonto#ucezu_isinkwa> Ob-
jectSomeValuesFrom (<testonto#isiqephu>
<testonto#isinkwa>))

Noun class of “ucezu
isinkwa” cannot be resolved

SubClassOf (<testonto#ukhilimu_oyiqhwa>
ObjectSomeValuesFrom (<testonto#eeee>
<testonto #ukukhota_ukhilimu_ oyiqhwa>))

Noun class of “ukukhota
ukhilimu oyiqhwa” cannot
be resolved

SubClassOf (<testonto #ukukhota_-
ukhilimu_oyiqhwa> ObjectSomeValuesFrom
(<testonto#isiqephu> <testonto#ukhilimu_-
oyiqhwa>))

noun class of “ukukhota
ukhilimu oyiqhwa” cannot
be resolved

SubClassOf (<testonto#okubomvu>
<testonto#umbala>)

noun class of “umbala” can-
not be resolved

SubClassOf (<testonto#isifundo_sezibalo>
<testonto#isifundo>)

noun class of “isifundo sez-
ibalo” cannot be resolved

SubClassOf (<testonto#igazi> Ob-
jectSomeValuesFrom(<testonto#eeee>
<testonto#isampula_igazi>))

noun class of “isampula
igazi” cannot be resolved

SubClassOf (<testonto#isinkwa> Ob-
jectSomeValuesFrom(<testonto#eeee>
<testonto#ucezu_isinkwa>))

noun class of “ucezu
isinkwa” cannot be resolved

SubClassOf (<testonto#UMphathi>
<testonto#umsebenzi>)

noun class of “UMphathi”
cannot be resolved

SubClassOf (<testonto#iphilisi>
ObjectComplementOf (Object-
SomeValuesFrom (<testonto#enziwe>
<testonto#umshobingo>)))

ObjectComplementOf not
in scope

SubClassOf (<testonto#ugogo> Ob-
jectComplementOf (ObjectSomeValues-
From(<testonto#dla> <testonto#i-apula>)))

ObjectComplementOf not
in scope

SubClassOf (<testonto#umuntu>
ObjectComplementOf (Object-
SomeValuesFrom(<testonto#feza>
<testonto#umsebenzi_onqunyiwe>)))

ObjectComplementOf not
in scope

SubClassOf (<testonto#ivazi> Object-
ComplementOf(ObjectSomeValuesFrom
(<testonto#akhiwe> <testonto#amanzi>)))

ObjectComplementOf not
in scope

SubClassOf (<testonto#ingwe> Ob-
jectComplementOf (ObjectSomeValues-
From(<testonto#dla> <testonto#i-apula>)))

ObjectComplementOf not
in scope

168

the author’s Twitter and WhatsApp accounts. Following Keet and Khumalo [136],
we were interested in determining the extent to which OWLSIZ “generates gram-
matically correct sentences” [136]. We do so by getting human judgements of the
texts’ grammatically and acceptability. By grammatically, we are still referring to
“adherence to rules of syntax [...] and overall legitimacy as an [isiZulu] sentence”
[106] and by acceptability, we are referring to a goodness criterion used to deter-
mine whether the text is acceptable or understandable, even if it may have a few
grammatical inconsistencies. Specifically, the participants were asked to judge the
quality of each question by choosing either “grammatical and acceptable”, “grammat-
ical and ambiguous”, “ungrammatical and understandable”, or “ungrammatical and
unacceptable”. To ensure high-quality judgements, we ensured that each participant
did not judge more than 40 sentences by randomly dividing the 76 texts into two
surveys each containing 38 texts (henceforth, surveys A and B). Survey A includes
texts generated by templates 3, 10, 12, and 13 while survey B does not and survey
B includes texts generated by templates 4, 8, and 11 while survey A does not. Both
surveys include the texts generated by all the other templates. Participants were
randomly assigned to a survey.

The verbalisable input to the verbaliser, the template chosen for each input, and the
resulting question are given the Appendix B. We provide an example of the generated
question and its input:
Input : SubClassOf(< testonto#ukubhukuda >< testonto#umdlalo >)

Template : Ingabe {SC} onke {C1} {SC} {COP} {C2} ?

Output : Ingabe konke ukubhukuda kungumdlalo?

In the example above, we use ‘testonto’ prefixes to refer to Keet and Khumalo’s test
ontology. The value of the second and last words in the output depend on the noun
class of the input. The above template is captured using ToCT in the following
manner:

1 <templ1> a toct:Template
2 ; toct:supportsLanguage <translZu >
3 ; toct:hasFirstPart <ngabe>
4 ; toct:hasLastPart <qmark>
5 ; toct:hasPart <onke>, <c1>, <c2> .
6
7 <translZu> a mola:Dialect
8 ; mola:isFamily <isiZulu> .
9

10 <ngabe> a toct:UnimorphicWord

169

11 ; toct:hasValue "Ingabe"^^xsd:string
12 ; toct:hasNextPart <onke> .
13
14 <onke> a toct:PolymorphicWord
15 ; toct:reliesOn <c1>
16 ; toct:hasFirstPart <bo>
17 ; toct:hasLastPart <onkeRoot >
18 ; toct:hasNextPart <c1> .
19
20 <bo> a toct:Concord
21 ; cao:hasConcordType <subjCConType >
22 ; toct:hasLabel "subjC"^^xsd:string
23 ; toct:hasNextPart <onkeRoot > .
24
25 <onkeRoot> a toct:Root
26 ; toct:hasValue "onke"^^xsd:string .
27
28 <c1> a toct:Slot
29 ; toct:hasLabel "C1"^^xsd:string
30 ; toct:hasNextPart <c2> .
31
32 <c2> a toct:PolymorphicWord
33 ; toct:reliesOn <c1>
34 ; toct:hasFirstPart <c2Sub>
35 ; toct:hasLastPart <c2Slot>
36 ; toct:hasNextPart <qmark> .
37
38 <c2Sub> a toct:Concord
39 ; toct:hasLabel "subjC"^^xsd:string
40 ; cao:hasConcordType <subjCConType >
41 ; toct:hasNextPart <cop> .
42
43 <cop> a toct:Copula
44 ; toct:hasLabel "COP"^^xsd:string
45 ; toct:hasNextPart <c2Slot> .
46
47 <c2Slot> a toct:Slot
48 ; toct:hasLabel "C2"^^xsd:string .
49
50 <qmark> a toct:Punctuation
51 ; toct:hasValue "?"^^xsd:string .

The first word is captured a unimorphic word (lines 10-12), since the second word’s
value depends on the noun inserted into the slot, it is captured via a polymorphic
word (lines 14-18), and the last word is also captured via a polymorphic word (lines
32-36). The polymorphic words have slots whose types is captured via the concord
annotation ontology (see lines 21 and 40).

We now turn to discuss the results of the evaluation.

170

Table 6.5: Number of participants’ judgements. Abbreviations: Pct. = percent, ac-
cept. = acceptable, understand. = understandable, gramm. = grammatical, ambig.
= ambiguous, ungramm. = ungrammatical

Survey Gramm.
+ ambig.

Gramm.
+ accept.

Ungramm.
+ under-
stand.

Ungramm.
+ unaccept.

A 17 41 6 12
B 23 78 19 32
A+B 40 119 25 44
A+B Pct. 18% 52% 11% 19%

6.4.3 Results of external evaluation

Only Template 8 yielded text with grammatical errors. When verbalising Dat-
aPropertyAssertion(neminyaka uZola 50), the system generated the following
output Ingabe uZola neminyaka 50? ‘Is Zola aged 50?’. This is lacking agreement
markers; hence it is grammatically incorrect. The correct should be Ingabe uZola
[SC]neminyaka [RelC]ngu-50? where the subject concord (SC) depends on the in-
dividual (uZola) and the relative concord (RelC) depends on the noun found in the
object property (i.e., iminyaka). This was corrected in the ToCT captured templates
and they can downloaded from https://github.com/AdeebNqo/ToCT.

External evaluation received a total of six participants. Of those six, two took part
in Survey A (1 L1 isiZulu speaker and 1 L2 speaker) and the four took part in Survey
B (all are L1 isiZulu speakers). The two participants from survey A made a total
of 76 judgements. Survey B participants made a total of 152 judgements (38 per
participant). The separation of the participants’ judgements into their respective
categories is listed in Table 6.5.

We also calculated the number of texts that all participants judge as being gram-
matically correct irrespective of whether they are acceptable or ambiguous. This
was calculated by counting the number of texts where participants judged them as
any combination of ‘grammatical and ambiguous’ and ‘grammatical and acceptable’.
Survey A participants agreed with their judgements in 16/38 texts and survey B
participants agreed in 18/38 texts. By agree, we mean that they selected the same
options among the four for each text. We also investigated whether the disagreement
was not as a result of text length since some participants may prefer compact text.
We found that the disagreement is not due to differences in text length since the texts
for which the participants agree and disagree have texts of similar length (agree =

171

https://github.com/AdeebNqo/ToCT

average of 4 words and disagree = 5 average words), save for a single outlier with
7 words in the texts for which they disagree. The number of sentences for which
the participants judge in the affirmative for grammaticality, understandability, and
acceptability are given in Table 6.6.

There are 7/38 texts where participants agreed that they are either ambiguous or
unacceptable in Survey A and there are 10/38 such texts in Survey B.

6.4.4 Summary

ToCT is able to capture the 14/18 templates that are outside the scope of English-
oriented templates. Of the 18 total templates, only four templates (6, 7, 8, 9) only
have fixed words and slots only. The rest of the templates either support sub-lexical
constituents, word-to-word dependencies, or both. Technically, English oriented tem-
plate models could be stretched to cater for the templates that only have sub-lexical
constituents and no dependencies (6.1, 6.2, 6.3, and 6.4 in Table 6.3). For Nguni
languages, this approach forces one to pair the required grammar rules that were
introduced in Chapter 2 in an orthogonal fashion. This approach may be sufficient
for small application domains; however, in order to produce reusable tools that are
easy to maintain then the organisation of the various components must be reached
via deliberate steps.

6.5 Discussion
We now turn to discuss ToCT’s scope and its ability to capture the various elements
found in the isiXhosa GaliWeather and OWLSIZ template collections. We also discuss
the grammaticality and acceptability of the generated text.

A majority of OWLSIZ’s texts are judged positively. We use the phrase ‘judged
positively’ to refer to aggregate judgements of understandable, acceptable, and gram-
matically correct texts. In survey A and B, Table 6.6 shows that there are a few texts
where the participants made the same judgement. Nonetheless, since there were only

Table 6.6: Number of text for which participants agree regarding grammaticality,
understandability, and acceptability

Survey Grammaticality Understandability Acceptability
A 23 0 12
B 18 2 9

172

7/38 (Survey A) and 10/38 (Survey B) texts where the participants agreed that the
text is either ambiguous or unacceptable then this means that for a majority of the
texts (31/38 for Survey A and 28/38), participants had a positive view but differed
in that one believed text was acceptable while the other viewed it as understandable.
The participants also agreed that most of Survey A’s texts (61%) are grammatically
correct.

A closer analysis of the few texts where there is agreement between participants that
the texts are either ambiguous or unacceptable, it is likely that the texts are of good
quality but participants misunderstood how to evaluate the text. For instance, when
given text that reflects an unacceptable conceptualisation of the real world, then
participants may be selecting “ungrammatical and unacceptable” to reflect the unac-
ceptability of the conceptualisation, as opposed to evaluating the quality of the text.
This is suspected in the evaluation of the question Ingabe lonke ibhotela lenza ifoni
eliyi-1 ncamashi? (‘Does every butter make exactly 1 phone?’) where three partic-
ipants selected “Ungrammatical and unacceptable” and one selected “Grammatical
and ambiguous”, even though the text is of good quality in this case, as judged by
the present author (an L2 isiZulu speaker). In the context of validating knowledge
contained in an ontology, this is a valid question. However, when analysed from a
purely linguistic perspective then it is not valid since there is no agreement between
the mass noun (i.e., butter) and countable noun (i.e., phone).

This affirms the observation that since natural language is not precise, human partic-
ipants who have no modelling experience are likely to assume unspecified knowledge
and that may lead to errors [238, 226]. It motivates the use of primers to ensure that
participants only evaluate text and do not commit to a particular conceptualisation
of the world since the ontology’s knowledge may capture a different world. Such a
difference may be due to erroneous modelling (e.g., the false assertion that a professor
is a part of some university in a strict5 mereological sense), a conceptualisation that
is known to experts in a particular domain but goes against common-sense (e.g., dogs
salivate as a way of sweating), or any other reason.

Returning to the isiXhosa GaliWeather system, there is agreement among the par-
ticipants that over 50% of the text generated are fluent and grammatically correct.
The rest of the texts (10/23) are not determined to be unclear and ungrammatical,
instead there is no consensus regarding their quality. There are numerous possibilities
as to why there is no consensus over these texts. For instance, it may be confusing to

5cf. Keet and Artale’s [132] meronymic part-whole relation

173

imagine a context in which one would expect T20 from a forecast hence it does not
seem fluent and grammatical to some respondents.

1 T20: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
2 nangona amaqondo awazokunyuka esehla ekuhambeni kwexesha.
3 English trans: The temperatures will be low for this period of the
4 year, but they will not oscillate over time.

The isiXhosa equivalent of the phrase “for this period of the year” may be seen
as confusing, without additional context, since does not explicitly state the period
being compared. The isiXhosa text also uses ‘amaqondo” twice instead of a referring
expression on the second time.

The reason for the lack of consensus cannot be morphological agreement and/or
phonological conditioning errors because analysis by the author, who is an L1 speaker,
shows that there are none. Alternatively, there may be region-based preferences due
to one’s dialect. For the created templates, we have used what can be termed as
the “official” (recognised as such by the South African constitution) or standardised
isiXhosa. Nomlomo [210] (as cited in [253]) has previously pointed out that develop-
ment of the standard language heavily favours the Gaika6 dialect (numbered S41D
in [173, 174]) for historical reasons. Consequently, speakers of dialects such as Hlubi
or Bhaca, for instance, may prefer and easily understand the text if it used different
terminology and grammatical constructions, especially since there is evidence that
isiXhosa-speaking students struggle with understanding standardized isiXhosa [203].
To demonstrate the dialect issue for our templates, consider the difference in the use of
/ths/ instead of /th/ between the Bhaca dialect and the official isiXhosa. Nomlomo
suggests that the Bhaca dialect uses /ths/ while official isiXhosa uses /th/. For in-
stance, the official isiXhosa’ word ndithi ‘I say’ takes the form ndithsi in Bhaca [210].
Consequently, it is likely that some participants may have expected GaliWeather’s
texts T0, T4, and T6 to use elithse ‘that is’ instead of elithe, for instance.

Solving the dialect issue when building an NLG system is not trivial, as evidenced
by the fact that it has also not been solved in the education sector. South African
language teachers and the education research community has had debates on how to
best teach students and balance their needs against the expectations and wishes of
parents [253]. In the case of NLG, one could try and resolve the matter via selecting
evaluation participants and binning them by dialect. This approach assumes that we
have the ability to generate the same text for the various dialects. However, binning
participants is not practical for Nguni languages because we cannot generate different

6Alternative names used by other authors are isiNgqika, Ngqika, or Ncqika.

174

versions of the same text for the various dialects. This is a consequence of not having
up-to-date documentation of the differences in dialects for the considered languages.
In addition, creating such documentation is outside the scope of this thesis and is left
for future linguists. In general, one possible solution to this issue, first proposed by
Alexander [6], is the deliberate harmonisation of Nguni languages in order to create
“Standard Nguni”; thus doing away with the problem of multiple dialects. To the best
of our knowledge, this suggestion has not been acted upon, partly because the Nguni
languages do not have an institution similar to the French Academy. Moving forward,
additional work is required to investigate whether Nomlomo’s [210] catalogue of lexical
and grammatical differences between some of the dialects still hold. Even if their
catalogue, or a portion of it, still holds for present day dialects then it would still need
to be extended to cover more than a subregion of the Eastern Cape province.

We now turn to compare our work to existing approaches; our work offers a separation
between the declaration of the templates and their linearisation; hence, it enables re-
usability with respect to the linearisation algorithms. Our approach does not require
the recreation of the linearisation algorithms for each new application domain. In
addition, unlike the ad hoc or augmented templates, we offer a principled approach
that allows a clear analysis and purposeful approach to combine templates and rules.
This means that our approach can be used to decide how best to combine the two
assets to allow re-usability and/or scaffolding. Moreover, since our approach relies
on ontologies, it allows the use of automated reasoners for template inconsistency
checking.

Overall, the outcomes of the isiXhosa and isiZulu evaluation described above suggest
that our approach is able to generate good quality text within the described con-
straints. The systems used for the evaluations generate text by using templates that
are captured using ToCT for isiZulu and isiXhosa.

175

Chapter 7

Conclusion

The purpose of this thesis was to solve the research problem that was first stated in
Section 1.5. We restate it here for convenience:

To the best of our knowledge, there are no systematic and planned meth-
ods of associating templates with CGRs. There are also no specifications
of interoperable templates, especially ones that have support for mor-
phologically rich languages. In addition, there are no architectures for
creating an easy to maintain and reusable template-based surface realis-
ers. As such, there are no Nguni language surface realisation tools that
are easy to maintain, can be used for knowledge-to-text and data-to-text
systems, and generate understandable and grammatically correct text.

We set out to solve the research problem via a two-step approach:

• Step 1: we presented a method for a pairing of simple templates and CGRs in
Chapter 3, an architecture for surface realisers that are easy to maintain and
prioritise resource reuse in Chapter 5, and an ontology-based specification for
simple templates that support morphologically rich languages in Chapter 4.

• Step 2: we then created a partial data-to-text system and a complete knowledge-
to-text system for isiZulu and isiXhosa, respectively, and evaluated the qual-
ity of their generated texts in Chapter 6. The two systems use a surface re-
aliser that expects templates captured using the Task ontology for CNL Tem-
plates (ToCT).

We demonstrate how the theoretical contributions and proof-of-concept tools intro-
duced collectively solve the research problem and answer the research questions in

176

this chapter.

The rest of chapter is structured in the following manner: Section 7.1 presents a
summary of the achievements and we have organised them according to the research
questions introduced in Chapter 1, Section 7.2 highlights the main contributions of
this thesis, and Section 7.3 presents a number avenues that can be pursued as future
work.

7.1 Revisiting research questions
The research that we conducted was driven by specific research questions. We now
turn to demonstrate how we have answered each one.

1. To answer research question 1 (What are the characteristics of systematic meth-
ods of pairing templates and computational grammar rules to form augmented
templates? How do they enhance the selection of models of templates to sup-
port grammatically complex languages?): our results show that a model-based
approach allows one to deliberately choose the kinds of pairing relationships
that are to be supported. Consequently, efficient use of resources is attained
intentionally instead of being arrived at by coincidence. The answer to this
question depends on the answers to its sub-questions:

• To answer research question 1 part 1a (How to relate templates with CGRs
to support template scaffolding and resource reuse?): we demonstrated that
an approach that begins by creating a general model of the relationships
for pairing the two artefacts is necessary. We created a conceptual model
whose relationships are selected to support template scaffolding and CGRs
reuse in this thesis. We then formalised it using set theory in Section 3.2
and demonstrated in Section 3.4 that seven families of grammar-infused
templates exist based on the types of relationships supported using the
formalised model.

• To answer research question 1 part 1b (How do the ad hoc models used
by Natural Language Generation (NLG) existing systems differ concerning
their support for the features mentioned in sub-question 1a?): existing
systems can be compared based on their support for embedding, partial
attachment, and compulsory attachment for pairing simple templates and
CGRs. They can be classified as belonging to one of the seven families. We

177

also demonstrated the utility of the families and the categorisation via an
isiZulu use-case of choosing an appropriate approach for pairing template
and CGRs in the context of building a NLG system for producing questions
in the area of conceptual modelling. While one can create a new template
type each time when building a system, our approach makes it possible to
make informed decisions when reusing an existing template type.

2. To answer research question 2 (What are the various surface realisation tasks
and how can they be organised to produce surface realisers that are reusable
and easy to maintain for Nguni languages?): we identified structure induction,
selection, encoding, linearisation, and ranking as the crucial tasks for comparing
surface realisers. These features are important for control and maintainability.
The decision is based on our knowledge and analysis of surface realisers in
other languages. We analysed existing surface realisers as they are found in
multiple domains and eras to identify current and past architectural trends in
finer detail. We then used the discovered trends regarding the surface realisation
tasks and apriori knowledge regarding maintainable software products to create
a surface realisation architecture. The answer to this question also depends on
the answers to the corresponding sub-questions:

• To answer question 2 part 2a (How do surface realisation tasks, as found
in existing NLG architecture comparisons, limit the analysis of existing
surface realiser architectures at finer granularity concerning their suitabil-
ity for Nguni languages?): we showed that the granularity of the existing
architecture analysis does not allow an ultra-fine analysis of each module,
especially the surface realiser, since it has focused on high-level tasks re-
quired by all modules. Specifically, the tasks identified and used by [68,
196] do not make clear what sub-tasks are required by the surface realiser
to do ‘ordering’. Finer granularity is crucial for improving surface realisers
for Nguni languages since the few attempts at building such components
have been ad hoc and have not made architectural design decisions a cen-
trality.

• To answer research question 2 2b (What are the granular tasks, low-level
than the tasks identified in part 2a, and how can they organised to achieve
easy to maintain and reusable surface realisers for Nguni languages?): we
identified five low-level tasks (i.e., structure selection, encoding, induction,
linearisation, and ranking) in Section 5.2 and mapped each of the tasks

178

to separate modules. We then created an architecture that supports the
most features of a maintainable software product, as defined in the BS
ISO/IEC 25010:2011 standard.

• To answer the part of research question 2 part 2c (What are the al-
gorithm(s), template specification(s), and annotation model(s) that are
needed for the relevant tasks mentioned in question 2b in order to pro-
duce correct text?): we determined the need and created the a number
of resources. We created an algorithm for the linearisation task. We
created a task ontology, called ToCT, formalised in Web Ontology Lan-
guage (OWL), that can be used to capture simple templates that are also
appropriate for Nguni languages since Chapter 3’s definition of grammar-
infused templates allows the separation of the templates from the engine.
Concerning the annotation model, we determined the need for a linguistic
annotation ontology for capturing the types of concords. We then created
a concord annotation ontology, together with language-specific axiomi-
tisations for isiXhosa and isiZulu, following the framework presented in
[55].

3. To answer research question 3 (Do Nguni NLG systems that use a realiser that
organises its modules according to the method established in Q2 generate text
that is correct (i.e., fluent, acceptable, and/or grammatically correct) in selected
data-to-text and knowledge-to-text scenarios?): we built a data-to-text system
for isiXhosa and a knowledge-to-text for isiZulu as instruments to investigate
this question. The templates used in both systems are captured using ToCT, our
novel task ontology, and they have multiple polymorphic words; hence, they are
outside the competence of simple templates and canned text. We demonstrated
that most of the text generated by the systems is judged positively by speakers
of isiXhosa and isiZulu through surveys.

7.2 Contributions
This thesis’ main contributions lie in the field of NLG, in the sub-area of surface
realisation for low-resourced languages. At a finer granularity, they are in the areas
of template representation to support interoperability, surface realiser architectures
that result in software that is easy to maintain, and combination of templates and
CGRs, while prioritising resource re-use, to support low-resourced languages. The

179

complete list of contributions covers theoretical aspects, proof-of-concept software,
ontologies, templates, and a corpus.

Theoretical contributions:

• A model-based approach for pairing templates and CGR, to be used to produce
what we have termed grammar-infused templates (introduced in Section 3.2).
This contribution stems from work done to answer research question 1.

• An architecture for template-based surface realisers that are easy to maintain to
be used for generating African languages, especially ones that are low-resourced.
The architecture is also usable for non-African languages (introduced in Chap-
ter 5). This contribution stems from the work done to answer research question
2.

• An ontology, called ToCT, for template specification and supporting interoper-
ability between systems that make use of templates (introduced in Chapter 4).
This contribution also stems from our work done to answer research question
2.

Proof-of-concept software, introduced in Chapter 6, and it stems from work done to
answer research question 3:

• A template-based surface realiser for isiZulu and isiXhosa whose support has
been demonstrated in the areas of data-to-text and knowledge-to-text.

• A generic grammar engine interface that is implemented in Java. We rely on the
polymorphism principle from Object-Oriented Programming (OOP) to create
a generic base that can be instantiated by any Niger-Congo B (NCB) language.

• Instances of grammar engines for isiXhosa and isiZulu that are implemented
using Java.

• An isiZulu question generator called OWLSIZ that is implemented in Java.

• A template parser for templates that are capturing using ToCT and serialised
in Terse RDF Triple Language (Turtle).

Linguistic annotation ontologies and templates (introduced in Chapters 4 and 6):

• A task ontology to be used for annotating concord types and its axiomatisations
for isiZulu and isiXhosa.

180

• Templates for generating isiZulu questions from 13 main OWL constructs (i.e.,
SubClassOf, ClassAssertion, ObjectPropertyAssertion, EquivalentClasses,
DisjointClasses, ObjectSomeValuesFrom, ObjectHasValue, DataProperty
Assertion, DataHasValue, ObjectAllValuesFrom, ObjectExactCardinal-
ity, ObjectMin Cardinality, and ObjectMaxCardinality). They can be
adapted for other purposes within the area of question generation from ontolo-
gies.

• Templates for generating weather forecasts in isiXhosa. They were obtained
by translating templates from GaliWeather [234]. They can be used a base for
a complete NLG system where the engineer would be responsible for building
the appropriate document planning (and some micro-planning rules) for their
target audience.

The proof-of-concept software, excluding OWLSIZ verbaliser, can be downloaded
from https://github.com/AdeebNqo/NguniTextGeneration. The linguistic anno-
tation ontologies, templates, OWLSIZ verbaliser, and corpus can be downloaded from
https://github.com/AdeebNqo/ToCT.

7.3 Further research
In this section, we provide two avenues for additional work that we have identi-
fied.

7.3.1 Template creation and management tools

In this work, we have created the templates manually using a simple text editor
and sometimes Protégé, the ontology development environment. This approach is
not optimal for new users of ToCT, especially one with no expertise regarding the
morphology of NCB languages, hence there is a need for tools to support the effective
management and visualisation of the resources. Additional work could be done in
creating Graphical user interface (GUI)-based tools that have assistive features such
as drag-and-drop, auto-complete, and extracting candidate templates from a corpus
(e.g., Proskurnia et al.’s [230] work on English emails). The drag-and-drop feature can
be understood as serving the same function as Scratch’s [176] blocks but for ToCT’s
concepts. The exact features to be included in such a tool could be determined and
prioritised based on which template creation errors are made frequently by new users.
Nonetheless, the primary feature of such a tool could be the rendering/visualisation

181

https://github.com/AdeebNqo/NguniTextGeneration
https://github.com/AdeebNqo/ToCT

of ToCT because while ToCT has several benefits from a computational perspective,
its templates are long and not easy to interpret to new users.

7.3.2 Automated tools for approach selection

We have created a classification of existing template types and categorisations of
surface realiser architectures. Developers of template-based surface realisers could
use the Tables presented in Chapters 3 and 5 as part of their work-flows. This also
holds for engineers who are building tools for non-NCB languages since the archi-
tectures discussed in Chapter 5 are usable for other languages, for instance. Ad-
ditional work could be done to build automated tools to assist engineers choose a
template model or an architecture without necessarily pouring over Chapters 3 and
5; hence, expediting the process. Moreover, tools that instantiate code that abides
by the architecture could be built and integrated into popular Integrated develop-
ment environments (IDEs). This is somewhat analogous to how the OntOlogy Pitfall
Scanner! (OOPS!) expedites the process of ontology validation when compared to
an engineer’s manual use of the catalogue of pitfalls provided by Poveda-Villalón,
Gómez-Pérez, and Suárez-Figueroa [223].

7.3.3 Coverage for other Nguni languages

We analysed the broad landscape of systems that rely on a variety of NLG techniques
in Chapters 2 and 3 and we found that most of the systems are usable or are potential
candidates for the languages in question rely on ad hoc template models. In addition,
most of the existing techniques were not targeting NLG applications for low-resourced
languages or Southern African languages. As a remedy, we have presented novel
models and resources to enable the creation of surface realisation techniques that
combine templates and grammar rules for purposes of generating text. However, our
work has currently focused on two Nguni languages, namely isiXhosa and isiZulu. For
future work, we aim to extend the coverage of the created engines and we also aim to
extend the languages covered to include isiNdebele, and siSwati (and their respective
dialects).

7.3.4 NLG systems with mixed methods, resource reuse, and
evaluation

We plan to investigate how to integrate surface realisers that abide by our architecture
as part of larger NLG systems whose other modules may be neural-based. Specifically,

182

we will investigate the extent to which the language-independent modules introduced
by Castro Ferreira et al. [51] can be reused.

We also plan to investigate the ease with which NLG engineers are able to discover
and adapt existing templates for new applications.

Lastly, we also plan to consult a sociolinguist with whom we can study the differences
in isiZulu and isiXhosa dialects, use the differences to alter our templates to generate
texts for each dialect, and conduct a larger evaluation for each dialect.

183

Appendix A

ToCT Competency questions and
queries

Competency questions followed their respectively SPARQL Protocol and RDF Query
Language (SPARQL) queries, or notes if they are not in scope or not translat-
able.

1 CQ1. How many fixed phrasal and lexical segments does [template]
2 have?
3
4 SELECT distinct ?template (count(?unimorph) as ?numUnimorphWords)
5 (count(?phrase) as ?numFixedPhrases)
6 ((?numUnimorphWords + ?numFixedPhrases) as ?totalFixedParts)
7 WHERE {
8 {
9 ?template a toct:Template .

10 }
11 UNION
12 {
13 ?template co:item ?unimorph .
14 ?unimorph a toct:UnimorphicWord .
15 }
16 UNION
17 {
18 ?template co:item ?phrase .
19 ?phrase a toct:Phrase .
20 filter not exists { ?phrase toct:hasValue "" } .
21 }
22 }
23 GROUP BY ?template
24
25
26 CQ2. How many words that depend on others does [template] have?
27
28 SELECT distinct ?template (count(distinct ?polymorph) as
29 ?totalWordsThatDependOnOthers)

184

30 WHERE {
31 ?template a toct:Template .
32 ?polymorph a toct:PolymorphicWord .
33 ?template co:item ?polymorph .
34 }
35 GROUP BY ?template
36
37 CQ3. Which properties may result in a change of form between
38 [word1] and [word2] where there exists a dependency?
39
40 SELECT ?word1 ?word2 ?propType
41 WHERE {
42 ?word1 a toct:UnimorphicWord .
43 ?word2 a toct:PolymorphicWord .
44 ?conc a toct:Concord .
45 ?word2 co:item ?conc .
46 ?word1 toct:controls ?conc .
47 ?word1 toct:labeledWith ?prop .
48 ?label a ?propType .
49 ?propType rdfs:subClassOf toct:PropertyClass .
50 }
51
52
53 CQ4. If there is a dependency between [word] and [word], which
54 word is the governor?
55
56 SELECT ?governor ?word
57 WHERE {
58 ?governor a toct:UnimorphicWord .
59 ?word a toct:PolymorphicWord .
60 ?conc a toct:Concord .
61 ?word co:item ?conc .
62 ?governor toct:controls ?conc .
63 }
64
65
66 CQ5. Does [word] have a constant base form?
67
68 SELECT distinct ?wordWithConstantBase
69 WHERE {
70 ?wordWithConstantBase a toct:PolymorphicWord .
71 ?root a toct:Root .
72 ?wordWithConstantBase co:item ?root .
73 }
74
75 CQ6. Which grammar rule will be activated when forming [word]
76 if its dependenton another word?
77
78 Not in scope.
79
80 CQ7. Can [word] ever be placed in [slot]?
81
82 SELECT ?wordThatCanFillSlot ?slot
83 WHERE {

185

84 ?wordThatCanFillSlot a toct:Word .
85 ?slot a toct:Slot .
86 ?wordThatCanFillSlot toct:fillsIn ?slot .
87 }
88
89 CQ8. Can the word ordering in [template] exist without the
90 template?
91
92 NO SPARQL
93
94 CQ9. Can the word portion`s ordering in [word] exist without
95 the word?
96
97 NO SPARQL
98
99 CQ10. Which words use [grammar rule]?

100
101 Not in scope
102
103 CQ11. Is [template] grammar-infused?
104
105 Not in scope.
106
107 CQ12. How many slots does [template] have?
108
109 SELECT ?template (count(?slot) as ?slotCount)
110 WHERE {
111 ?template a toct:Template .
112 ?slot a toct:Slot .
113 ?template co:item ?slot .
114 }
115 GROUP BY ?template
116
117 CQ13. How many fixed segments have more than one word?
118
119 SELECT distinct ?template (count(?phrase)
120 as ?NumFixedSegmentsMoreThanOneWord)
121 WHERE {
122 ?template a toct:Template .
123 ?phrase toct:memberOf ?template .
124 }
125 GROUP BY ?template
126
127 CQ14. For each [word], in what order are its associated grammar
128 rules applied,if at all?
129
130 Not in scope.

186

Appendix B

Survey materials

Table B.1: Names and assigned identifiers (ID) of the resulting isiXhosa GaliWeather
templates. The template names are all suffixed with “Template”, however, that is
omitted from the table for brevity.

Name cloud1 cloud2 cloud3 cloud4 cloudc1 cloudc2 cloudc3 temp1
ID 1 2 3 4 5 6 7 9
Name temp2 temp3 temp4 temp5 temp6 temp7 temp8 temp9
ID 10 11 12 13 14 15 16 17
Name temp10 temp11 temp12 wind1 wind2 wind3 - -
ID 18 19 20 21 22 23 - -

List of texts evaluated in the isiXhosa GaliWeather survey:
1 T0: Kuzakubakho izulu elisibakeleyo ekupheleni , elithe gqabagqaba
2 ngamafu esiphakathini kunye nelimathumb ' antaka ekupheleni kwemini
3 T1: Kuzakubakho izulu elisibakeleyo jikelele imini yonke
4 T2: Kuzakubakho izulu elisibakeleyo ekuqaleni nasesiphakathini semini,
5 nangona liyakujika kubekho elimathumb ' antaka ekupheleni
6 T4: Kuzakubakho izulu elisibakeleyo ekuqaleni kwemini, nangona
7 liyakujika kubekho elithe gqabagqaba ngamafu ekupheleni
8 nasesiphakathini
9 T5: Kuzakubakho izulu elihle kulemini izayo, nangona ngamanye amaxesha

10 kuzakubakho izulu elimathumb ' antaka
11 T6: Silindele utshintsho -ntsitshwano lwezulu elisibakeleyo nelihle
12 kwezintsuku zizayo, nangona emaxesheni athile kuzakubakho izulu
13 elithe gqabagqaba ngamafu
14 T7: Kuzakubakho izulu elihle kubekho namaxesha apho kukho izulu
15 elimathumb ' antaka okanye elisibakeleyo
16 T8: Imo yesibhakabhaka izokuhluka kakhulu kwimini yonke
17 T9: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye neqondo
18 eliphezulu liphantsi kakhulu xa lithelekiswa netempritsha
19 elindelekileyo kwelixesha enyakeni, kodwa ndawo yonke itemprisha
20 ihla ngamandla
21 T10: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye neqondo

187

22 eliphezulu liphantsi kakhulu xa lithelekiswa netempritsha
23 elindelekileyo kwelixesha
24 enyakeni, kodwa ndawo yonke itemprisha izakunyuka isehla
25 T11: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye iqondo
26 eliphezulu liphantsi kakhulu xa lithelekiswa nethemprisha
27 elindelekileyo kwelixesha enyakeni, iqondo eliphantsi lona
28 linyuka ngamandla ekuhambeni kwexesha
29 T12: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye iqondo
30 eliphezulu liphantsi kakhulu xa lithelekiswa nethempritsha
31 elindelekileyo kwelixesha
32 enyakeni, nangona amaqondo azakunyuka esehla ekuhambeni kwexesha
33 T13: Iqondo eliphantsi lemozulu liphantsi kakhulu kwaye iqondo
34 eliphezulu liphezulu kakhulu xa lithelekiswa nethemprisha
35 elindelekileyo kwelixesha enyakeni, kwaye iqondo eliphezulu
36 linyuka kancinci -kancinci ekuhambeni kwexesha
37 T14: Iqondo eliphantsi lemozulu liphezulu kakhulu kwaye iqondo
38 eliphezulu liphantsi kakhulu xa lithelekiswa nethemprisha
39 elindelekileyo kwelixesha enyakeni, nangona amaqondo azakunyuka
40 esehla
41 T15: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
42 kodwa ndawo yonke itemprisha inyuka ngamandla
43 T16: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
44 nangona amaqondo azakunyuka esehla
45 T17: Amaqondo obushushu azakuba ephezulu kakhulu ngelixesha enyakeni,
46 iqondo eliphantsi lona lihla kancinci
47 T18: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
48 nangona amaqondo awazokunyuka esehla
49 T19: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
50 kwaye amaqondo aphezulu anyuka kancinci ekuhambeni kwexesha
51 T20: Amaqondo obushushu azakuba ephantsi kakhulu ngelixesha enyakeni,
52 nangona amaqondo awazokunyuka esehla ekuhambeni kwexesha
53 T21: Silindele umoya onamandla amakhulu ukusuka emantla ngomvulo
54 T22: Silindele imimoya ezakuba namandla amakhulu ukusuka emzantsi-mpuma
55 ngomvulo
56 T23: Silindele imimoya ezakuba namandla amakhulu ukusuka emantla-ntshona
57 ukuqala ngolwesithathu , itshintse ibe namandla ukusuka emntla-mpuma
58 ngolwesihlanu

The input to the OWLSIZ verbaliser, its chosen template, and the final text. We
use prefix testontology refers to the test ontology taken from Keet and Khumalo
[135].

1 Input: SubClassOf(<testonto#ukubhukuda > <testonto#umdlalo >)
2 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
3 Output: Ingabe konke ukubhukuda kungumdlalo?
4
5 Input: SubClassOf(<testonto#indlovu> <testonto#isilwane >)
6 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
7 Output: Ingabe yonke indlovu iyisilwane?
8
9 Input: SubClassOf(<testonto#i-okhestra >

10 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#isazi_somnyuziki >))
11 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?

188

12 Output: Ingabe lonke i-okhestra linesazi somnyuziki?
13
14 Input: SubClassOf(<testonto#indlovu>
15 ObjectSomeValuesFrom(<testonto#dla> <testonto#ihlamvana >))
16 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
17 Output: Ingabe yonke indlovu idla ihlamvana?
18
19 Input: SubClassOf(<testonto#isisu>
20 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#indilinga_yokudla >))
21 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
22 Output: Ingabe sonke isisu sinendilinga yokudla?
23
24 Input: SubClassOf(<testonto#ixhiba>
25 ObjectSomeValuesFrom(<testonto#dddd> <testonto#iziko >))
26 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
27 Output: Ingabe lonke ixhiba lineziko?
28
29 Input: SubClassOf(<testonto#ibhubesi > <testonto#isilwane >)
30 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
31 Output: Ingabe lonke ibhubesi liyisilwane?
32
33
34 Input: SubClassOf(<testonto#ukusebenza >
35 ObjectSomeValuesFrom(<testonto#yawufeza >
36 <testonto#umsebenzi_onqunyiwe >))
37 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
38 Output: Ingabe konke ukusebenza kuyawufeza umsebenzi onqunyiwe?
39
40 Input: SubClassOf(<testonto#iqembu_labahlinzi >
41 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#udokotela >))
42 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
43 Output: Ingabe lonke iqembu labahlinzi linodokotela?
44
45 Input: SubClassOf(<testonto#impala> <testonto#isilwane >)
46 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
47 Output: Ingabe yonke impala iyisilwane?
48
49 Input: SubClassOf(<testonto#inhliziyo >
50 ObjectMinCardinality(1 <testonto#enza> <testonto#ifoni >))
51 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
52 Output: Ingabe yonke inhliziyo yenza ifoni elingaphezulu kuka-1?
53
54 Input: SubClassOf(<testonto#udokotela >
55 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#ukuhlinza >))
56 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
57 Output: Ingabe wonke udokotela uyingxenye ekuhlinzeni?
58
59 Input: SubClassOf(<testonto#isihlahla > <testonto#umuthi >)
60 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
61 Output: Ingabe sonke isihlahla singumuthi?
62
63 Input: SubClassOf(<testonto#ukugwinya >
64 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#ukudla >))
65 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?

189

66 Output: Ingabe konke ukugwinya kuyingxenye ekudleni?
67
68 Input: SubClassOf(<testonto#iNgqungquthela >
69 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#uMnumzana >))
70 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
71 Output: Ingabe yonke iNgqungquthela inoMnumzana?
72
73 Input: SubClassOf(<testonto#inhliziyo >
74 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#umuntu >))
75 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
76 Output: Ingabe yonke inhliziyo iyingxenye kumuntu?
77
78 Input: SubClassOf(<testonto#incwadi>
79 ObjectSomeValuesFrom(<testonto#ffff> <testonto#imvilophu >))
80 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
81 Output: Ingabe yonke incwadi isemvilophini?
82
83 Input: SubClassOf(<testonto#umfundi_ongenaziqu >
84 ObjectSomeValuesFrom(<testonto#enza> <testonto#isifundo >))
85 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
86 Output: Ingabe wonke umfundi ongenaziqu wenza isifundo?
87
88 Input: SubClassOf(<testonto#umqondo_womshini >
89 ObjectSomeValuesFrom(<testonto#ffff> <testonto#ikhompyutha >))
90 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
91 Output: Ingabe wonke umqondo womshini usekhompyutheni?
92
93 Input: SubClassOf(<testonto#ukuhlinza >
94 ObjectSomeValuesFrom(<testonto#bbbb> <testonto#iqembu_labahlinzi >))
95 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
96 Output: Ingabe konke ukuhlinza kuneqembu labahlinzi?
97
98 Input: SubClassOf(<testonto#umakhalekhukhwini > <testonto#ifoni>)
99 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?

100 Output: Ingabe wonke umakhalekhukhwini uyifoni?
101
102 Input: SubClassOf(<testonto#indlulamithi >
103 ObjectSomeValuesFrom(<testonto#dla> <testonto#ihlamvana >))
104 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
105 Output: Ingabe yonke indlulamithi idla ihlamvana?
106
107 Input: SubClassOf(<testonto#ubabekazi >
108 ObjectMaxCardinality(1 <testonto#enza> <testonto#ifoni >))
109 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
110 Output: Ingabe wonke ubabekazi wenza ifoni elimbalwa ku-1?
111
112 Input: SubClassOf(<testonto#indlulamithi > <testonto#isilwane >)
113 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
114 Output: Ingabe yonke indlulamithi iyisilwane?
115
116 Input: SubClassOf(<testonto#isazi_somnyuziki >
117 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#i-okhestra >))
118 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
119 Output: Ingabe sonke isazi somnyuziki siyingxenye e-okhestreni?

190

120
121 Input: SubClassOf(<testonto#ugogo>
122 ObjectComplementOf(ObjectSomeValuesFrom(<testonto#dla>
123 <testonto#i-apula >)))
124
125 Input: SubClassOf(<testonto#inkawu>
126 ObjectSomeValuesFrom(<testonto#dla> <testonto#isithelo >))
127 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
128 Output: Ingabe yonke inkawu idla isithelo?
129
130 Input: SubClassOf(<testonto#ufulawa>
131 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#isinkwa >))
132 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
133 Output: Ingabe wonke ufulawa uyingxenye esinkweni?
134
135 Input: SubClassOf(<testonto#imvilophu >
136 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#incwadi >))
137 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
138 Output: Ingabe yonke imvilophu inencwadi?
139
140 Input: SubClassOf(<testonto#isibhedlela >
141 ObjectSomeValuesFrom(<testonto#dddd>
142 <testonto#ithiyetha_yokuhlinzela >))
143 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
144 Output: Ingabe sonke isibhedlela sinethiyetha yokuhlinzela?
145
146 Input: SubClassOf(<testonto#ukhetho>
147 ObjectSomeValuesFrom(<testonto#bbbb> <testonto#umphakathi >))
148 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
149 Output: Ingabe lonke ukhetho lunomphakathi?
150
151 Input: SubClassOf(<testonto#umuntu>
152 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#inhliziyo >))
153 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
154 Output: Ingabe wonke umuntu unenhliziyo?
155
156 Input: SubClassOf(<testonto#indilinga_yokudla >
157 ObjectSomeValuesFrom(<testonto#ffff> <testonto#isisu >))
158 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
159 Output: Ingabe yonke indilinga yokudla isesiswini?
160
161 Input: SubClassOf(<testonto#ivazi>
162 ObjectSomeValuesFrom(<testonto#akhiwe> <testonto#ubumba >))
163 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
164 Output: Ingabe yonke ivazi yakhiwe ubumba?
165
166 Input: SubClassOf(<testonto#ingwe> <testonto#isilwane >)
167 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
168 Output: Ingabe yonke ingwe iyisilwane?
169
170 Input: SubClassOf(<testonto#isifundo >
171 ObjectSomeValuesFrom(<testonto#fundiswa > <testonto#uSolwazi >))
172 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
173 Output: Ingabe sonke isifundo sifundiswa uSolwazi?

191

174
175 Input: SubClassOf(<testonto#iziko>
176 ObjectSomeValuesFrom(<testonto#umunxa> <testonto#ixhiba >))
177 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
178 Output: Ingabe lonke iziko lumunxa ixhiba?
179
180 Input: SubClassOf(<testonto#indlu>
181 ObjectSomeValuesFrom(<testonto#akhiwe> <testonto#itshe >))
182 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
183 Output: Ingabe yonke indlu yakhiwe itshe?
184
185 Input: SubClassOf(<testonto#iqembu_labahlinzi >
186 ObjectSomeValuesFrom(<testonto#hlanganyele > <testonto#ukuhlinza >))
187 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
188 Output: Ingabe lonke iqembu labahlinzi lihlanganyele ukuhlinza?
189
190 Input: SubClassOf(<testonto#uMnumzana >
191 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#iNgqungquthela >))
192 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
193 Output: Ingabe wonke uMnumzana uyingxenye eNgqungqutheleni?
194
195 Input: SubClassOf(<testonto#ithiyetha_yokuhlinzela >
196 ObjectSomeValuesFrom(<testonto#umunxa> <testonto#isibhedlela >))
197 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
198 Output: Ingabe yonke ithiyetha yokuhlinzela umunxa isibhedlela?
199
200 Input: SubClassOf(<testonto#ukuhlinza >
201 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#udokotela >))
202 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
203 Output: Ingabe konke ukuhlinza kunodokotela?
204
205 Input: SubClassOf(<testonto#ikhompyutha >
206 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#umqondo_womshini >))
207 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
208 Output: Ingabe lonke ikhompyutha linomqondo womshini?
209
210 Input: SubClassOf(<testonto#ihebhu> <testonto#umuthi >)
211 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
212 Output: Ingabe lonke ihebhu lingumuthi?
213
214 Input: SubClassOf(<testonto#umshobingo >
215 ObjectSomeValuesFrom(<testonto#cccc> <testonto#amanzi >))
216 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
217 Output: Ingabe wonke umshobingo unamanzi?
218
219 Input: SubClassOf(<testonto#inkawu> <testonto#isilwane >)
220 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
221 Output: Ingabe yonke inkawu iyisilwane?
222
223 Input: SubClassOf(<testonto#iphilisi >
224 ObjectSomeValuesFrom(<testonto#enziwe> <testonto#isitashi >))
225 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
226 Output: Ingabe lonke iphilisi lenziwe isitashi?
227

192

228 Input: SubClassOf(<testonto#umuntu>
229 ObjectSomeValuesFrom(<testonto#dla> <testonto#isithelo >))
230 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
231 Output: Ingabe wonke umuntu udla isithelo?
232
233 Input: SubClassOf(<testonto#umphakathi >
234 ObjectSomeValuesFrom(<testonto#hlanganyele > <testonto#ukhetho >))
235 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
236 Output: Ingabe wonke umphakathi uhlanganyele ukhetho?
237
238 Input: SubClassOf(<testonto#inja> <testonto#isilwane >)
239 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
240 Output: Ingabe yonke inja iyisilwane?
241
242 Input: SubClassOf(<testonto#umfundi_ongenaziqu > <testonto#umfundi >)
243 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
244 Output: Ingabe wonke umfundi ongenaziqu ungumfundi?
245
246 Input: SubClassOf(<testonto#umuntu>
247 ObjectSomeValuesFrom(<testonto#phuza> <testonto#uketshezi >))
248 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
249 Output: Ingabe wonke umuntu uphuza uketshezi?
250
251 Input: SubClassOf(<testonto#ikhambi> <testonto#umuthi >)
252 Ques. template: Ingabe [subjC]onke [C1] [subjC][COP][C2]?
253 Output: Ingabe lonke ikhambi lingumuthi?
254
255 Input: SubClassOf(<testonto#isinkwa>
256 ObjectSomeValuesFrom(<testonto#cccc> <testonto#ufulawa >))
257 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
258 Output: Ingabe sonke isinkwa sinofulawa?
259
260 Input: SubClassOf(<testonto#ibhubesi >
261 ObjectSomeValuesFrom(<testonto#dla> <testonto#impala >))
262 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
263 Output: Ingabe lonke ibhubesi lidla impala?
264
265
266 Input: SubClassOf(<testonto#ukudla>
267 ObjectSomeValuesFrom(<testonto#aaaa> <testonto#ukugwinya >))
268 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
269 Output: Ingabe konke ukudla kunokugwinya?
270
271 Input: SubClassOf(<testonto#ibhotela >
272 ObjectExactCardinality(1 <testonto#enza> <testonto#ifoni >))
273 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
274 Output: Ingabe lonke ibhotela lenza ifoni eliyi-1 ncamashi?
275
276 Input: SubClassOf(<testonto#amanzi>
277 ObjectSomeValuesFrom(<testonto#ingxenye > <testonto#umshobingo >))
278 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
279 Output: Ingabe onke amanzi ayingxenye emshobingweni?
280
281 Input: SubClassOf(<testonto#ihlamvana >

193

282 ObjectAllValuesFrom(<testonto#ingxenye> <testonto#isihlalo >))
283 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
284 Output: Ingabe lonke ihlamvana lingxenye isihlalo sodwa?
285
286 Input: SubClassOf(<testonto#uSolwazi >
287 ObjectSomeValuesFrom(<testonto#fundisa> <testonto#isifundo >))
288 Ques. template: Ingabe [subjC]onke [C1] [subjC][C2]?
289 Output: Ingabe wonke uSolwazi ufundisa isifundo?
290
291 Input: DataPropertyAssertion(<testonto#neminyaka >
292 <testonto#uZola> "50"^^xsd:int)
293 Ques. template: Ingabe [I] [DP] [L]?
294 Output: Ingabe uZola neminyaka 50?
295
296 Input: DisjointClasses(<testonto#ibhubesi > <testonto#indlovu >)
297 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
298 Output: alikho yini ibhubesi eliyindlovu?
299
300 Input: DisjointClasses(<testonto#indoda> <testonto#umfazi >)
301 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
302 Output: alikho yini indoda elingumfazi?
303
304 Input: DisjointClasses(<testonto#isidlanyama > <testonto#isidlazitshalo >)
305 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
306 Output: asikho yini isidlanyama esiyisidlazitshalo?
307
308 Input: DisjointClasses(<testonto#indebe> <testonto#ingilazi >)
309 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
310 Output: ayikho yini indebe eyingilazi?
311
312 Input: DisjointClasses(<testonto#ukugijima > <testonto#ukuhlala >)
313 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
314 Output: akukho yini ukugijima okungukuhlala?
315
316 Input: DisjointClasses(<testonto#ibhotela > <testonto#ushizi >)
317 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
318 Output: alikho yini ibhotela elingushizi?
319
320 Input: DisjointClasses(<testonto#ubabekazi > <testonto#umalume >)
321 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
322 Output: awukho yini ubabekazi ungumalume?
323
324 Input: DisjointClasses(<testonto#ihebhivo > <testonto#ikhanivo >)
325 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
326 Output: alikho yini ihebhivo eliyikhanivo?
327
328 Input: DisjointClasses(<testonto#indlu> <testonto#umjondolo >)
329 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
330 Output: ayikho yini indlu engumjondolo?
331
332 Input: DisjointClasses(<testonto#inyama> <testonto#umfino >)
333 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
334 Output: ayikho yini inyama engumfino?
335

194

336 Input: DisjointClasses(<testonto#isipunu> <testonto#umfoloko >)
337 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
338 Output: asikho yini isipunu esingumfoloko?
339
340 Input: DisjointClasses(<testonto#isihlalo > <testonto#itafula >)
341 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
342 Output: asikho yini isihlalo esiyitafula?
343
344 Input: DisjointClasses(<testonto#umfula> <testonto#umsele >)
345 Ques. template: a[subjCon]kho yini [C1] [relCon][COP][C2]?
346 Output: awukho yini umfula ongumsele?
347
348 Input: ObjectPropertyAssertion(<testonto#fundisa>
349 <testonto#iNokia_3310 > <testonto#uZola>)
350 Ques. template: [I1] [subjCon][OP] [I2]?
351 Output: iNokia 3310 lifundisa uZola?
352
353 Input: EquivalentClasses(<testonto#indlu> <testonto#inyama>)
354 Ques. template: Ingabe noma yi[objCon]phi [C2] [relCon][COP][C1]?
355 Output: Ingabe noma yiyiphi indlu eyinyama?
356
357 Input: ClassAssertion(<testonto#umakhalekhukhwini >
358 <testonto#iNokia_3310 >)
359 Ques. template: Ingabe [I] [subjCon][COP][C]?
360 Output: Ingabe iNokia 3310 lingumakhalekhukhwini?
361
362 Input: ClassAssertion(<testonto#indoda> <testonto#uZola>)
363 Ques. template: Ingabe [I] [subjCon][COP][C]?
364 Output: Ingabe uZola uyindoda?

195

Quality of computer produced
descriptions of the weather
Invitation to participate, and benefits: You are invited to participate in a research study
conducted by members of the Knowledge Engineering team (www.meteck.org/keen/) from
the Computer Science department at the University of Cape Town, South Africa. The study
aim is to determine the difference in naturalness and quality of utterances produced by
data-driven and template-based text generation systems. We believe that your experience
would be a valuable source of information, and hope that by participating you may gain
useful knowledge.

Procedures: During this study, you will be asked to rate isiXhosa texts based on their
fluency and grammaticality.

Recording: We will not take photographs and/or record audio/video as part of the study.

Risks: There are no potentially harmful risks related to your participation in this study.

Disclaimer/Withdrawal: Your participation is completely voluntary; you may refuse to
participate, and you may withdraw at any time without having to state a reason and without
any prejudice or penalty against you. Should you choose to withdraw, the researchers
commit not to use any of the information you have provided without your signed consent.
Note also that the researchers may withdraw you from the study at any time.

Confidentiality: All information collected in this study will be kept private in that you will not
be identified by name or by affiliation to an institution. Confidentiality and anonymity will
be maintained as pseudonyms will be used.

Ethics approval code: FSREC 014-2020

What signing this form means: By clicking on the "Next" button, you agree to participate in
this research study. The aim, procedures to be used, as well as the potential risks and
benefits of your participation have been explained to you in detail, using this form. Refusal
to participate in or withdrawal from this study at any time will have no effect on you in any
way. You are free to contact us (via zmahlaza@cs.uct.ac.za), to ask questions or request
further information, at any time during this research.

* Required

Figure B.1: English instructions that were available to participants in the IsiXhosa
GaliWeather survey

196

Umgangatho wengxelo yemozulu
ebhalwe yikhompyutha
Isimemo sokuthatha inxaxheba, kunye nezibonelelo: Uyamenywa ukuba uthathe inxaxheba
kuphando olwenziwe ngamalungu eqela le Knowledge Engineering
(www.meteck.org/keen/) kwisebe lezeNzululwazi ngeKhompyutha kwiYunivesithi
yaseKapa, eMzantsi Afrika. Injongo yoluphando kukufumanisa umgangatho wemibhalo
eyenziwa yisistimu yokwenza ulwimi lwendalo. Sikholelwa ukuba amava akho angaba
ngumthombo wolwazi oluxabisekileyo, kwaye sinethemba lokuba ngokuthatha inxaxheba
unokufumana ulwazi oluluncedo.

Inkqubo: Koluphando, uzakucelwa ukuba uthelekelele ubuciko kunye nokugobela imigaqo
mthetho yegrama kwimibhalo yesiXhosa ozakube uyinikiwe.

Ukurekhoda: Asizokuthatha iifoto kunye/okanye ukurekhoda isandi/ividiyo njengenxalenye
yesifundo.

Ubungozi: Akukho mingcipheko inokuba yingozi ngokunxulumene nenxaxheba yakho kolu
phando.

Ukurhoxa: Uthatho-nxaxheba kuxhomekeke kwintando yakho ngokupheleleyo; unokwala
ukuthatha inxaxheba, kwaye ungarhoxa nangaliphi ixesha ungakhange uchaze sizathu
kwaye akuzokubakho isigwebo okanye isohlwayo ngokuchasene nawe ngenxa yokurhoxa.
Ukuba ukhetha ukurhoxa, abaphandi bayazibophelela ekubeni abazokulisebenzisa ulwazi
obanike lona ngaphandle kwemvume yakho esayiniweyo. Qaphela kwakhona ukuba
abaphandi banokurhoxisa esifundweni nangaliphi na ixesha.

Ubumfihlo: Lonke ulwazi oluqokelelwe koluphando luyakugcinwa luyimfihlo njengokuba
awuzokuchongwa ngegama okanye ngonxibelelwano lwakho neziko ethile. Izinto
eziyimfihlo kunye nenkcukacha zakho zisakufihlwa ngoba kuzakusetyenziswa igama
elingelilo elakho.

Ikhowudi yokuvunywa kokuziphatha: FSREC 014-2020

Kuthetha ntoni ukusayina le fomu: Ngokucofa iqhosha elibhalwe "Next", uyavuma
ukuthatha inxaxheba koluphando. Injongo, imigaqo-nkqubo eza kusetyenziswa, kunye
nobungozi obunokubakho kunye nezibonelelo zokuthatyathwa kwenxaxheba zichaziwe
kuwe ngokucacileyo kule fomu. Ukwala ukubandakanyeka okanye ukurhoxa kolu phando
ngalo naliphi na ixesha akusayi kuba nempembelelo nangayiphi na indlela. Ukhululekile
ukunxibelelana nathi (via zmahlaza@cs.uct.ac.za), ukubuza imibuzo okanye ukucela ulwazi
oluthe kratya, ngalo naliphi na ixesha loluphando.

* Required

Figure B.2: IsiXhosa instructions that were available to participants in the IsiXhosa
GaliWeather survey

197

Instructions

You will be shown one text at a time and asked to rate its grammaticality and
acceptability of each text. The grammaticality of the text should be judged based on
whether it conforms to the grammatical rules of the language and acceptability of
the text should be judged based on its lack of ambiguity and the ease with which
you can understand the text.

Quality of computer generated isiZulu
questions
Invitation to participate, and benefits: You are invited to participate in a research study
conducted by members of the Knowledge Engineering team (www.meteck.org/keen/) from
the Computer Science department at the University of Cape Town, South Africa. The study
aim is to determine the grammaticality and acceptability of texts produced by a template-
based text generation computer system. We believe that your experience would be a
valuable source of information, and hope that by participating you may gain useful
knowledge.

Procedures: During this study, you will be asked to rate isiZulu texts based on their
grammaticality and acceptability.

Recording: We will not take photographs and/or record audio/video as part of the study.

Risks: There are no potentially harmful risks related to your participation in this study.

Disclaimer/Withdrawal: Your participation is completely voluntary; you may refuse to
participate, and you may withdraw at any time without having to state a reason and without
any prejudice or penalty against you. Should you choose to withdraw, the researchers
commit not to use any of the information you have provided without your signed consent.
Note also that the researchers may withdraw you from the study at any time.

Confidentiality: All information collected in this study will be kept private in that you will not
be identified by name or by affiliation to an institution. Confidentiality and anonymity will
be maintained as pseudonyms will be used.

Ethics approval code: FSREC 014-2020

What signing this form means: By clicking on the "Next" button, you agree to participate in
this research study. The aim, procedures to be used, as well as the potential risks and
benefits of your participation have been explained to you in detail, using this form. Refusal
to participate in or withdrawal from this study at any time will have no effect on you in any
way. You are free to contact us (via zmahlaza@cs.uct.ac.za), to ask questions or request
further information, at any time during this research.

* Required

There are 38 texts in this survey.

Figure B.3: English instructions that were available to participants in the OWLSIZ
survey

198

2 April 2020

Mr. Zola Mahlaza
Department of Computer Science

The evaluation of the quality of isiXhosa weather forecast and isiZulu ontology verbalisation text

Dear Mr. Zola Mahlaza

I am pleased to inform you that the Faculty of Science Research Ethics Committee has approved the above-named
application for research ethics clearance, subject to the conditions listed below.

• Restrictions on involving human participants in research must be adhered to, given current concerns about the

spread of Covid-19. Please ensure that you are aware of and comply with UCT policy on this, as communicated
by management.

• Implement the measures described in your application to ensure that the process of your research is ethically
sound; and

• Uphold ethical principles throughout all stages of the research, responding appropriately to
unanticipated issues: please contact me if you need advice on ethical issues that arise.

Your approval code is: FSREC 014- 2020

I wish you success in your research.

Yours sincerely

Dr Shari Daya
Chair: Faculty of Science Research Ethics Committee

Cc: A/Prof. Maria Keet (Supervisor)

Faculty of Science

University of Cape Town
Rondebosch

South Africa 7701

E-mail: shari.daya@uct.ac.za
Tel: 021 650-2880

Figure B.4: Ethics approval document for the evaluation of the quality of isiXhosa
weather forecast and isiZulu ontology verbalisation text

199

Bibliography

[1] D. M. Abdullah and Y. Chali. “Towards Generating Query to Perform Query
Focused Abstractive Summarization using Pre-trained Model”. In: Proceedings
of the 13th International Conference on Natural Language Generation, INLG
2020, Dublin, Ireland, December 15-18, 2020. Ed. by B. Davis, Y. Graham,
J. D. Kelleher, and Y. Sripada. Association for Computational Linguistics,
2020, pp. 80–85.

[2] W. Abed and E. Reiter. “Arabic NLG Language Functions”. In: Proceedings
of the 13th International Conference on Natural Language Generation, INLG
2020, Dublin, Ireland, December 15-18, 2020. Association for Computational
Linguistics, 2020, pp. 7–14.

[3] G. Aguado, A. Bañón, J. Bateman, S. Bernardos, M. Fernández, A. Gómez-
Pérez, E. Nieto, A. Olalla, R. Plaza, and A. Sánchez. “ONTOGENERATION:
Reusing domain and linguistic ontologies for Spanish text generation”. In:
Workshop on Applications of Ontologies and Problem Solving Methods, 13th
European Conference on Artificial Intelligence, August 23-28 1998, Brighton,
UK.

[4] I. Akermi, J. Heinecke, and F. Herledan. “Tansformer based Natural Language
Generation for Question-Answering”. In: Proceedings of the 13th International
Conference on Natural Language Generation, INLG 2020, Dublin, Ireland,
December 15-18, 2020. Ed. by B. Davis, Y. Graham, J. D. Kelleher, and Y.
Sripada. Association for Computational Linguistics, 2020, pp. 349–359.

[5] M. M. Al-Yahya. “OntoQue: A Question Generation Engine for Educational
Assesment Based on Domain Ontologies”. In: Proceedings of the 11th IEEE
International Conference on Advanced Learning Technologies, ICALT 2011,
Athens, Georgia, USA, 6-8 July 2011. IEEE Computer Society, 2011, pp. 393–
395.

[6] N. Alexander. “The political economy of the harmonisation of the Nguni and
the Sotho languages”. In: Lexikos 8.8 (1998), pp. 269–275.

[7] M. Amith, F. J. Manion, M. R. Harris, Y. Zhang, H. Xu, and C. Tao. “Ex-
pressing Biomedical Ontologies in Natural Language for Expert Evaluation”.
In: Proceedings of the 16th World Congress on Medical and Health Informat-
ics, MEDINFO 2017: Precision Healthcare through Informatics, Hangzhou,
China, 21-25 August 2017. Ed. by A. V. Gundlapalli, M. Jaulent, and D.

200

Zhao. Vol. 245. Studies in Health Technology and Informatics. IOS Press,
2017, pp. 838–842.

[8] I. Androutsopoulos, G. Lampouras, and D. Galanis. “Generating Natural Lan-
guage Descriptions from OWL Ontologies: the NaturalOWL System”. In: Jour-
nal of Artificial Intelligence Research 48 (2013), pp. 671–715.

[9] W. T. Ang, R. Kanagasabai, and C. J. O. Baker. “Knowledge Translation:
Computing the Query Potential of Bio-ontologies”. In: Proceedings of the Work-
shop on Semantic Web Applications and Tools for Life Sciences (SWAT4LS),
Edinburgh, United Kingdom, November 28, 2008. Ed. by A. Burger, A. Paschke,
P. Romano, and A. Splendiani. Vol. 435. CEURWorkshop Proceedings. CEUR-
WS.org, 2008.

[10] G. Angeli, P. Liang, and D. Klein. “A Simple Domain-Independent Proba-
bilistic Approach to Generation”. In: Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2010, 9-11 Oc-
tober 2010, MIT Stata Center, Massachusetts, USA, A meeting of SIGDAT,
a Special Interest Group of the ACL. ACL, 2010, pp. 502–512.

[11] K. Angelov and R. Enache. “Typeful Ontologies with Direct Multilingual Ver-
balization”. In: Proceedings of the Second International Workshop on Con-
trolled Natural Language, CNL 2010, Revised Papers. Ed. by M. Rosner and
N. E. Fuchs. Vol. 7175. Lecture Notes in Computer Science. September 13-15,
Marettimo Island, Italy. Springer, 2010, pp. 1–20.

[12] D. E. Appelt. “Planning English Referring Expressions”. In: Artificial Intelli-
gence 26.1 (1985), pp. 1–33.

[13] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly
Learning to Align and Translate”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2015.

[14] J. Baldridge and G. M. Kruijff. “Coupling CCG and Hybrid Logic Dependency
Semantics”. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL,
2002, pp. 319–326.

[15] D. Bamutura and P. Ljunglöf. “Towards a Resource Grammar for Runyankore
and Rukiga”. In: Proceedings of the 2019 Workshop on Widening NLP. Flo-
rence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 2–6.

[16] V. Basile and A. Mazzei. “The DipInfo-UniTo system for SRST 2018”. In: Pro-
ceedings of the First Workshop on Multilingual Surface Realisation. Melbourne,
Australia: Association for Computational Linguistics, July 2018, pp. 65–71.

[17] J. A. Bateman, R. T. Kasper, J. D. Moore, and R. A. Whitney. A general
organization of knowledge for natural language processing: the Penman up-
per model. Tech. rep. Information Sciences Institute, Univeristy of Southern
California, Marina Del Rey, USA, 1990.

201

[18] J. A. Bateman. “Enabling technology for multilingual natural language genera-
tion: the KPML development environment”. In: Natural Language Engineering
3.1 (1997), pp. 15–55.

[19] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness,
P. F. Patel-Schneider, and L. A. Stein. OWL web ontology language reference.
url: https://www.w3.org/TR/owl-ref/#FunctionalProperty-def.

[20] A. Belz. “Probabilistic Generation of Weather Forecast Texts”. In: Human Lan-
guage Technology Conference of the North American Chapter of the Association
of Computational Linguistics, Proceedings, April 22-27, 2007, Rochester, New
York, USA. Ed. by C. L. Sidner, T. Schultz, M. Stone, and C. Zhai. Association
for Computational Linguistics, 2007, pp. 164–171.

[21] A. Belz. “Automatic generation of weather forecast texts using comprehensive
probabilistic generation-space models”. In: Natural Language Engineering 14.4
(2008), pp. 431–455.

[22] A. Belz, B. Bohnet, S. Mille, L. Wanner, and M. White. “The Surface Realisa-
tion Task: Recent Developments and Future Plans”. In: INLG 2012 - Proceed-
ings of the Seventh International Natural Language Generation Conference,
30 May 2012 - 1 June 2012, Starved Rock State Park, Utica, IL, USA. Ed. by
B. D. Eugenio, S. McRoy, A. Gatt, A. Belz, A. Koller, and K. Striegnitz. The
Association for Computer Linguistics, 2012, pp. 136–140.

[23] A. Belz, M. White, D. Espinosa, E. Kow, D. Hogan, and A. Stent. “The First
Surface Realisation Shared Task: Overview and Evaluation Results”. In: ENLG
2011 - Proceedings of the 13th European Workshop on Natural Language Gen-
eration, 28-30 September 2011, Nancy, France. Ed. by C. Gardent and K.
Striegnitz. The Association for Computer Linguistics, 2011, pp. 217–226.

[24] A. Belz, S. Mille, and D. M. Howcroft. “Disentangling the Properties of Hu-
man Evaluation Methods: A Classification System to Support Comparability,
Meta-Evaluation and Reproducibility Testing”. In: Proceedings of the 13th In-
ternational Conference on Natural Language Generation, INLG 2020, Dublin,
Ireland, December 15-18, 2020. Ed. by B. Davis, Y. Graham, J. D. Kelleher,
and Y. Sripada. Association for Computational Linguistics, 2020, pp. 183–194.

[25] A. Bertolino, G. De Angelis, A. Di Sandro, and A. Sabetta. “Is my model
right? Let me ask the expert”. In: Journal of Systems and Software 84.7 (2011),
pp. 1089–1099.

[26] W. H. I. Bleek. A comparative grammar of South African languages. Trübner
and Company, 1862.

[27] B. Bohnet, L. Wanner, S. Mille, and A. Burga. “Broad Coverage Multilingual
Deep Sentence Generation with a Stochastic Multi-Level Realizer”. In: Pro-
ceedings of the 23rd International Conference on Computational Linguistics,
COLING 2010, 23-27 August 2010, Beijing, China. Tsinghua University Press,
2010, pp. 98–106.

202

https://www.w3.org/TR/owl-ref/#FunctionalProperty-def

[28] M. Bollmann. “Adapting SimpleNLG to German”. In: Proceedings of the 13th
European Workshop on Natural Language Generation, ENLG 2011, 28-30
September 2011, Nancy, France. Association for Computational Linguistics,
2011, pp. 133–138.

[29] K. Bontcheva. “Generating Tailored Textual Summaries from Ontologies”. In:
The Semantic Web: Research and Applications, Second European Semantic
Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1,
2005, Proceedings. Ed. by A. Gómez-Pérez and J. Euzenat. Vol. 3532. Lecture
Notes in Computer Science. Springer, 2005, pp. 531–545.

[30] K. Bontcheva and Y. Wilks. “Automatic Report Generation from Ontologies:
The MIAKT Approach”. In: Natural Language Processing and Information
Systems, 9th International Conference on Applications of Natural Languages
to Information Systems, NLDB 2004, Salford, UK, June 23-25, 2004, Proceed-
ings. Ed. by F. Meziane and E. Métais. Vol. 3136. Lecture Notes in Computer
Science. Springer, 2004, pp. 324–335.

[31] S. E. Bosch, T. Eckart, B. Klimek, D. Goldhahn, and U. Quasthoff. “Prepara-
tion and Usage of Xhosa Lexicographical Data for a Multilingual, Federated
Environment”. In: Proceedings of the Eleventh International Conference on
Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018. 2018.

[32] N. Bouayad-Agha, G. Casamayor, S. Mille, M. Rospocher, H. Saggion, L.
Serafini, and L. Wanner. “From Ontology to NL: Generation of Multilingual
User-Oriented Environmental Reports”. In: Proceedings of the 17th Interna-
tional Conference on Applications of Natural Language to Information Sys-
tems, NLDB 2012 - Natural Language Processing and Information Systems,
Groningen, The Netherlands, June 26-28, 2012. Springer, 2012, pp. 216–221.

[33] N. Bouayad-Agha, G. Casamayor, S. Mille, and L. Wanner. “Perspective-
oriented generation of football match summaries: Old tasks, new challenges”.
In: ACM Trans. Speech Lang. Process. 9.2 (2012), 3:1–3:31.

[34] W. Bourquin. “Notes on the concords in Xhosa and Zulu, their differences and
general aspect”. In: African Studies 11.1 (1952), pp. 16–28.

[35] T. Bouttaz, E. Pignotti, C. Mellish, and P. Edwards. “A Policy-Based Ap-
proach to Context Dependent Natural Language Generation”. In: Proceedings
of the 13th European Workshop on Natural Language Generation, ENLG 2011,
28-30 September 2011, Nancy, France. ACL, 2011, pp. 151–157.

[36] D. Braun, K. Klimt, D. Schneider, and F. Matthes. “SimpleNLG-DE: Adapting
SimpleNLG 4 to German”. In: Proceedings of the 12th International Confer-
ence on Natural Language Generation, INLG 2019, Tokyo, Japan, October
29 - November 1, 2019. Ed. by K. van Deemter, C. Lin, and H. Takamura.
Association for Computational Linguistics, 2019, pp. 415–420.

203

[37] D. Braun, E. Reiter, and A. Siddharthan. “SaferDrive: An NLG-based be-
haviour change support system for drivers”. In: Natural Language Engineering
24.4 (2018), pp. 551–588.

[38] BS ISO/IEC 25010:2011. Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and soft-
ware quality models. Standard. London, UK: British Standard Institution, Mar.
2011.

[39] M. L. Burton and L. Kirk. “Semantic reality of Bantu noun classes: the Kikuyu
case”. In: Studies in African Linguistics 7.2 (July 1976), pp. 157–174.

[40] S. Busemann. “Best-First Surface Realization”. In: arXiv e-prints (May 1996).
arXiv: cmp-lg/9605010 [cs.CL].

[41] S. Busemann and H. Horacek. “A Flexible Shallow Approach To Text Gener-
ation”. In: Proceedings of the Ninth International Workshop on Natural Lan-
guage Generation, INLG 1998. Niagara-on-the-Lake, Ontario, Canada, August
5-7. 1998.

[42] J. Byamugisha. “Ontology verbalization in agglutinating Bantu languages: a
study of Runyankore and its generalizability”. PhD thesis. Department of Com-
puter Science, University of Cape Town, South Africa, 2019.

[43] J. Byamugisha, C. M. Keet, and B. DeRenzi. “Evaluation of a Runyankore
Grammar Engine for Healthcare Messages”. In: Proceedings of the 10th Inter-
national Conference on Natural Language Generation, INLG 2017, Santiago
de Compostela, Spain, September 4-7, 2017. 2017, pp. 105–113.

[44] J. Byamugisha, C. M. Keet, and B. DeRenzi. “Bootstrapping a Runyankore
CNL from an isiZulu CNL”. In: Proceedings of the 5th International Workshop
on Controlled Natural Language, CNL 2016, Aberdeen, UK, July 25-27, 2016.
Ed. by B. Davis, G. J. Pace, and A. Z. Wyner. Vol. 9767. Lecture Notes in
Computer Science. Springer, 2016, pp. 25–36.

[45] J. Byamugisha, C. M. Keet, and B. DeRenzi. “Tense and Aspect in Run-
yankore Using a Context-Free Grammar”. In: Proceedings of the Ninth Inter-
national Conference on Natural Language Generation, INLG 2016, September
5-8, 2016, Edinburgh, UK. Association for Computational Linguistics, 2016,
pp. 84–88.

[46] J. Byamugisha, C. M. Keet, and B. DeRenzi. “Pluralizing Nouns across Ag-
glutinating Bantu Languages”. In: Proceedings of the 27th International Con-
ference on Computational Linguistics, COLING 2018, Santa Fe, New Mexico,
USA, August 20-26, 2018. Ed. by E. M. Bender, L. Derczynski, and P. Isabelle.
Association for Computational Linguistics, 2018, pp. 2633–2643.

[47] J. J. Camilleri, N. E. Fuchs, and K. Kaljurand. ACE grammar library. Tech.
rep. D11.1. Multilingual Online Translation (MOLTO) project, 2012.

[48] N. N. Canonici. The grammatical structure of Zulu. Durban: University of
Natal, 1987.

204

https://arxiv.org/abs/cmp-lg/9605010

[49] N. N. Canonici. Elements of Zulu morpho-syntax. Rev. ed. Durban: Zulu Lan-
guage & Literature, University of Natal, 1995.

[50] M. A. Casteleiro, J. Des, M. J. F. Prieto, R. Perez, and S. Lekkas. “An
Ontology-Based Approach to Natural Language Generation from Coded Data
in Electronic Health Records”. In: Proceedings of the UKSim 5th European
Symposium on Computer Modeling and Simulation, EMS 2011, Madrid, Spain,
November 16-18, 2011. Ed. by D. Al-Dabass, A. Orsoni, A. A. Pantelous, G.
Romero, and J. Félez. IEEE, 2011, pp. 366–371.

[51] T. Castro Ferreira, C. van der Lee, E. van Miltenburg, and E. Krahmer. “Neu-
ral data-to-text generation: A comparison between pipeline and end-to-end
architectures”. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: As-
sociation for Computational Linguistics, Nov. 2019, pp. 552–562.

[52] T. Castro Ferreira, S. Wubben, and E. Krahmer. “Surface Realization Shared
Task 2018 (SR18): The Tilburg University Approach”. In: Proceedings of the
First Workshop on Multilingual Surface Realisation. Melbourne, Australia:
Association for Computational Linguistics, July 2018, pp. 35–38.

[53] V. K. Chaudhri, P. E. Clark, A. Overholtzer, and A. Spaulding. “Question
Generation from a Knowledge Base”. In: Proceedings of the 19th Interna-
tional Conference on Knowledge Engineering and Knowledge Management,
EKAW 2014. Ed. by K. Janowicz, S. Schlobach, P. Lambrix, and E. Hyvönen.
Vol. 8876. Lecture Notes in Computer Science. November 24-28, Linköping,
Sweden. Springer, 2014, pp. 54–65.

[54] C. Chavula and C. M. Keet. “Is Lemon Sufficient for Building Multilingual
Ontologies for Bantu Languages?” In: Proceedings of the 11th International
Workshop on OWL: Experiences and Directions (OWLED 2014) Co-Located
with 13th International Semantic Web Conference on (ISWC 2014), Riva Del
Garda, Italy, October 17-18, 2014. Vol. 1265. CEUR Workshop Proc. CEUR-
WS.org, 2014, pp. 61–72.

[55] C. Chavula and C. M. Keet. “An Orchestration Framework for Linguistic Task
Ontologies”. In: Metadata and Semantics Research - 9th Research Conference,
MTSR 2015, Manchester, UK, September 9-11, 2015, Proc. 2015, pp. 3–14.

[56] K. Chen, F. Li, B. Hu, W. Peng, Q. Chen, H. Yu, and Y. Xiang. “Neural data-
to-text generation with dynamic content planning”. In: Knowl. Based Syst. 215
(2021), p. 106610.

[57] Z. Chen, H. Eavani, W. Chen, Y. Liu, and W. Y. Wang. “Few-Shot NLG with
Pre-Trained Language Model”. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020. Ed. by D. Jurafsky, J. Chai, N. Schluter, and J. R. Tetreault. Association
for Computational Linguistics, 2020, pp. 183–190.

205

[58] A. Chisholm, W. Radford, and B. Hachey. “Learning to generate one-sentence
biographies from Wikidata”. In: Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers. Ed. by M.
Lapata, P. Blunsom, and A. Koller. Association for Computational Linguistics,
2017, pp. 633–642.

[59] P. Ciccarese and S. Peroni. “The Collections Ontology: Creating and handling
collections in OWL 2 DL frameworks”. In: Semantic Web 5.6 (2014), pp. 515–
529.

[60] P. Cimiano, J. Lüker, D. Nagel, and C. Unger. “Exploiting Ontology Lexica
for Generating Natural Language Texts from RDF Data”. In: Proceedings of
the 14th European Workshop on Natural Language Generation, ENLG 2013,
August 8-9, 2013, Sofia, Bulgaria. Ed. by A. Gatt and H. Saggion. Association
for Computer Linguistics, 2013, pp. 10–19.

[61] J. Coch. “Overview of AlethGen”. In: Eighth International Natural Language
Generation Workshop, INLG 1996, Herstmonceux Castle, Sussex, UK, June
12-15, 1996 - Posters and Demonstrations. 1996.

[62] D. A. Cojocaru and S. Trausan-Matu. “Text Generation Starting from an
Ontology”. In: Proceedings of the 12th Romanian Human-Computer Interaction
Conference, RoCHI 2015, Bucharest, Romania, September 24-25, 2015. Ed. by
M. Dardala and T. Rebedea. Matrix Rom, 2015, pp. 55–60.

[63] E. Contini-Morava. “Noun Classification in Swahili”. In: African Linguistics at
the Crossroads: Papers from Kwaluseni. Ed. by R. K. Herbert. Rüdiger Köppe
Verlag, 1997. Chap. 6.

[64] A. T. Cope. “The grammatical structure of Zulu”. In: African Studies 16.4
(1957), pp. 210–220.

[65] N. Dai, J. Liang, X. Qiu, and X. Huang. “Style Transformer: Unpaired Text
Style Transfer without Disentangled Latent Representation”. In: Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers. Ed. by
A. Korhonen, D. R. Traum, and L. Màrquez. Association for Computational
Linguistics, 2019, pp. 5997–6007.

[66] R. Dale. “NLP commercialisation in the last 25 years”. In: Natural Language
Engineering 25.3 (2019), pp. 419–426.

[67] R. Dale. “Natural language generation: The commercial state of the art in
2020”. In: Natural Language Engineering 26.4 (2020), pp. 481–487.

[68] R. Dale and E. Reiter. Building Natural Language Generation Systems. Cam-
bridge University Press, 2000.

[69] D. Dannélls. “Multilingual text generation from structured formal representa-
tions.” PhD thesis. Göteborg, Sweden: Department of Swedish, University of
Gothenburg, 2012.

206

[70] D. Dannélls. “On generating coherent multilingual descriptions of museum
objects from Semantic Web ontologies”. In: Proceedings of the Seventh Inter-
national Natural Language Generation Conference, INLG 2012, 30 May 2012
- 1 June 2012, Starved Rock State Park, Utica, IL, USA. Ed. by B. D. Euge-
nio, S. McRoy, A. Gatt, A. Belz, A. Koller, and K. Striegnitz. Association for
Computer Linguistics, 2012, pp. 76–84.

[71] D. Dannélls, M. Damova, R. Enache, and M. Chechev. “Multilingual online
generation from semantic web ontologies”. In: Proceedings of the 21st World
Wide Web Conference, WWW 2012, Lyon, France, April 16-20, 2012 (Com-
panion Volume). Ed. by A. Mille, F. Gandon, J. Misselis, M. Rabinovich, and
S. Staab. ACM, 2012, pp. 239–242.

[72] B. Davis, R. Enache, J. van Grondelle, and L. Pretorius. “Multilingual Ver-
balisation of Modular Ontologies Using GF and lemon”. In: Proceedings of the
Third International Workshop on Controlled Natural Language, CNL 2012,
Zurich, Switzerland, August 29-31, 2012. Ed. by T. Kuhn and N. E. Fuchs.
Vol. 7427. Lecture Notes in Computer Science. Springer, 2012, pp. 167–184.

[73] B. Davis, A. A. Iqbal, A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, and
S. Handschuh. “RoundTrip Ontology Authoring”. In: Proceedings on the 7th
International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26-30, 2008. Ed. by A. P. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. W. Finin, and K. Thirunarayan. Vol. 5318. Lecture Notes in
Computer Science. Springer, 2008, pp. 50–65.

[74] R. de Oliveira and S. Sripada. “Adapting SimpleNLG for Brazilian Portuguese
Realisation”. In: Proceedings of the Eighth International Conference on Natural
Language Generation, INLG 2014, 19-21 June 2014, Philadelphia, PA, USA.
Association for Computational Linguistics, 2014, pp. 93–94.

[75] K. Demuth. “Bantu noun class systems: loanword and acquisition evidence of
semantic productivity”. In: Systems of Nominal Classification. Ed. by G. Senft.
Cambridge University Press, 2000. Chap. 8, pp. 270–292.

[76] J. P. Denny and C. A. Creider. “The semantics of noun classes in Proto-Bantu”.
In: Noun classes and categorization. Ed. by C. G. Craig. John Benjamins
Publishing Company, 1986. Chap. 3, pp. 217–239.

[77] D. Derbyshire and D. L. Payne. “Noun classification systems of Amazonian
languages”. In: Amazonian linguistics. Studies in lowland South American lan-
guages (1990), pp. 243–272.

[78] C. M. Doke. Textbook of Zulu grammar. 2rd. Longmans Southern Africa, 1931.
[79] P. Dongilli and E. Franconi. “An Intelligent Query Interface with Natural

Language Support”. In: Proceedings of the Nineteenth International Florida
Artificial Intelligence Research Society Conference, Melbourne Beach, Florida,
USA, May 11-13, 2006. Ed. by G. Sutcliffe and R. Goebel. AAAI Press, 2006,
pp. 658–663.

207

[80] W. Du and A. W. Black. “Learning to Order Graph Elements with Application
to Multilingual Surface Realization”. In: Proceedings of the 2nd Workshop on
Multilingual Surface Realisation (MSR 2019). Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 18–24.

[81] J. Du Plessis. “The Structure of Nominal Modifiers in Xhosa”. In: South
African Journal of African Languages 5.2 (1985), pp. 35–42.

[82] J. A. Du Plessis and M. Visser. Xhosa Syntax. Via Africa Limited, 1992.
[83] O. Dušek. “Novel Methods for Natural Language Generation in Spoken Di-

alogue Systems”. PhD thesis. Institute of Formal and Applied Linguistics,
Charles University, Prague, 2017.

[84] O. Dušek, J. Novikova, and V. Rieser. “Evaluating the state-of-the-art of End-
to-End Natural Language Generation: The E2E NLG challenge”. In: Computer
Speech & Language 59 (2020), pp. 123–156.

[85] H. Elder. “ADAPT at SR’20: How Preprocessing and Data Augmentation
Help to Improve Surface Realization”. In: Proceedings of the Third Workshop
on Multilingual Surface Realisation. Barcelona, Spain (Online): Association for
Computational Linguistics, Dec. 2020, pp. 30–34.

[86] M. Elhadad and J. Robin. “An Overview of SURGE: a Reusable Compre-
hensive Syntactic Realization Component”. In: Eighth International Natural
Language Generation Workshop, INLG 1996, Herstmonceux Castle, Sussex,
UK, June 12-15, 1996 - Posters and Demonstrations. Ed. by D. Scott, J.
Bateman, G. Lapalme, D. McDonald, C. Paris, and K. Linden. 1996, pp. 1–4.

[87] A. Fan and C. Gardent. “Multilingual AMR-to-Text Generation”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020. Ed. by B. Webber,
T. Cohn, Y. He, and Y. Liu. Association for Computational Linguistics, 2020,
pp. 2889–2901.

[88] F. Farahnak, L. Rafiee, L. Kosseim, and T. Fevens. “The Concordia NLG
Surface Realizer at SRST 2019”. In: Proceedings of the 2nd Workshop on Mul-
tilingual Surface Realisation (MSR 2019). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 63–67.

[89] F. Farahnak, L. Rafiee, L. Kosseim, and T. Fevens. “Surface Realization Us-
ing Pretrained Language Models”. In: Proceedings of the Third Workshop on
Multilingual Surface Realisation. Barcelona, Spain (Online): Association for
Computational Linguistics, Dec. 2020, pp. 57–63.

[90] A. C. Fuentes, A. Ramos-Soto, and A. J. B. Diz. “Adapting SimpleNLG to
Galician language”. In: Proceedings of the 11th International Conference on
Natural Language Generation, Tilburg University, The Netherlands, November
5-8, 2018. Ed. by E. Krahmer, A. Gatt, and M. Goudbeek. Association for
Computational Linguistics, 2018, pp. 67–72.

208

[91] I. Funke, R. Helaoui, and A. Härmä. “Interactive health insight miner: an
adaptive, semantic-based approach”. In: Proceedings of the 11th International
Conference on Natural Language Generation, Tilburg University, The Nether-
lands, November 5-8, 2018. Ed. by E. Krahmer, A. Gatt, and M. Goudbeek.
Association for Computational Linguistics, 2018, pp. 478–479.

[92] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini. “TheWebNLG
Challenge: Generating Text from RDF Data”. In: Proceedings of the 10th Inter-
national Conference on Natural Language Generation, INLG 2017, Santiago
de Compostela, Spain, September 4-7, 2017. Ed. by J. M. Alonso, A. Bugarı́n,
and E. Reiter. Association for Computational Linguistics, 2017, pp. 124–133.

[93] A. Gatt and E. Krahmer. “Survey of the State of the Art in Natural Language
Generation: Core Tasks, Applications and Evaluation”. In: Journal of Artificial
Intelligence Research 61 (2018), pp. 65–170.

[94] A. Gatt and E. Reiter. “SimpleNLG: A Realisation Engine for Practical Appli-
cations”. In: ed. by E. Krahmer and M. Theune. March 30-31Athens, Greece.
Association for Computer Linguistics, 2009, pp. 90–93.

[95] F. Gillis-Webber, S. Tittel, and C. M. Keet. “A Model for Language An-
notations on the Web”. In: Knowledge Graphs and Semantic Web. Ed. by
B. Villazón-Terrazas and Y. Hidalgo-Delgado. Cham: Springer International
Publishing, 2019, pp. 1–16.

[96] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. “HermiT: An OWL
2 Reasoner”. In: Journal of Automated Reasoning 53.3 (Oct. 2014), pp. 245–
269.

[97] L. A. Goodman. “Snowball Sampling”. In: The Annals of Mathematical Statis-
tics 32.1 (1961), pp. 148–170.

[98] J. C. van Grondelle and M. Gülpers. “Specifying Flexible Business Processes
Using Pre and Post Conditions”. In: Proceedings of the 4th IFIP WG 8.1
Working Conference on The Practice of Enterprise Modeling, PoEM 2011.
Ed. by P. Johannesson, J. Krogstie, and A. L. Opdahl. Vol. 92. Lecture Notes
in Business Information Processing. November 2-3, Oslo, Norway. Springer,
2011, pp. 38–51.

[99] A. S. Grover, G. B. Van Huyssteen, and M. W. Pretorius. “The South African
human language technology audit”. In: Language resources and evaluation 45.3
(2011), pp. 271–288.

[100] N. Gruzitis, G. Nespore, and B. Saulite. “Verbalizing Ontologies in Controlled
Baltic Languages”. In: Human Language Technologies - The Baltic Perspec-
tive - Proceedings of the Fourth International Conference Baltic HLT 2010,
Riga, Latvia, October 7-8, 2010. Ed. by I. Skadina and A. Vasiljevs. Vol. 219.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2010, pp. 187–
194.

[101] N. Gruzitis, G. Nespore, and B. Saulite. “Verbalizing Ontologies in Controlled
Baltic Languages”. In: CoRR (2012). arXiv: 1211.0418.

209

https://arxiv.org/abs/1211.0418

[102] A. Gubbala, A. H. Ladiwala, U. Naik, and P. Cornelius. Citizen Friendly Report
of diversitydatakids.org. Tech. rep. San Josè State University, 2021.

[103] Y. Guo, D. Hogan, and J. van Genabith. “DCU at Generation Challenges 2011
Surface Realisation Track”. In: Proceedings of the 13th European Workshop on
Natural Language Generation. Nancy, France: Association for Computational
Linguistics, Sept. 2011, pp. 227–229.

[104] T. A. Halpin and M. Curland. “Automated Verbalization for ORM 2”. In:
On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,
OTM Confederated International Workshops and Posters, AWeSOMe, CAMS,
COMINF, IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, Per-
Sys, OTM Academy Doctoral Consortium, RDDS, SWWS, and SeBGIS 2006,
Montpellier, France, October 29 - November 3, 2006. Proceedings, Part II.
Ed. by R. Meersman, Z. Tari, and P. Herrero. Vol. 4278. Lecture Notes in
Computer Science. Springer, 2006, pp. 1181–1190.

[105] T. A. Halpin and J. P. Wijbenga. “FORML 2”. In: Proccedings of the 11th
International Workshop on Enterprise, Business-Process and Information Sys-
tems Modeling, BPMDS 2010, and Proceedings of the 15th International Con-
ference, EMMSAD 2010, held at CAiSE 2010, Hammamet, Tunisia, June 7-8,
2010. Ed. by I. Bider, T. A. Halpin, J. Krogstie, S. Nurcan, E. Proper, R.
Schmidt, and R. Ukor. Vol. 50. Lecture Notes in Business Information Pro-
cessing. Springer, 2010, pp. 247–260.

[106] V. Harrison and M. A. Walker. “Neural Generation of Diverse Questions using
Answer Focus, Contextual and Linguistic Features”. In: Proceedings of the 11th
International Conference on Natural Language Generation, Tilburg University,
The Netherlands, November 5-8, 2018. Ed. by E. Krahmer, A. Gatt, and M.
Goudbeek. Association for Computational Linguistics, 2018, pp. 296–306.

[107] R. K. Herbert. “Labial palatalization in Nguni and Sotho languages: internal
and external evidence”. In: South African Journal of African Languages 10.2
(1990), pp. 74–80.

[108] D. Hewlett, A. Kalyanpur, V. Kolovski, and C. Halaschek-Wiener. “Proc. of
the Workshop on End-User Semantic Web Interaction, held in conjunction
with the 4th Internatioanl Semantic Web conference (ISWC)”. In: Proc. of
the Workshop on End-User Semantic Web Interaction, held in conjunction
with the 4th Internatioanl Semantic Web conference (ISWC). Galway, Ireland,
November 7, 2005. CEUR-WS.org, 2005.

[109] F. Hielkema, C. Mellish, and P. Edwards. “Using WYSIWYM to Create an
Open-ended Interface for the Semantic Grid”. In: Proceedings of the Eleventh
European Workshop on Natural Language Generation, ENLG 2007, Schloss
Dagstuhl, Germany, June 17-20, 2007. Ed. by S. Busemann. 2007.

210

[110] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. “The Curious Case
of Neural Text Degeneration”. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. Open-
Review.net, 2020.

[111] X. Hong, E. Chang, and V. Demberg. “Improving Language Generation from
Feature-Rich Tree-Structured Data with Relational Graph Convolutional En-
coders”. In: Proceedings of the 2nd Workshop on Multilingual Surface Realisa-
tion (MSR 2019). Hong Kong, China: Association for Computational Linguis-
tics, Nov. 2019, pp. 75–80.

[112] B. A. Hossain, G. Rajan, and R. Schwitter. “CNL-ER: A Controlled Natural
Language for Specifying and Verbalising Entity Relationship Models”. In: Pro-
ceedings of the 17th Annual Workshop of the Australasian Language Technology
Association, ALTA 2019. Ed. by M. Mistica, M. Piccardi, and A. MacKinlay.
December 4-6, Sydney, Australia. Australasian Language Technology Associ-
ation, 2019, pp. 126–135.

[113] E. Hovy, G. van Noord, G. Neumann, and J. Bateman. “Language generation”.
In: Survey of the State of the Art in Human Language Technology. Ed. by R.
Cole, J. Mariani, H. Uszkoreit, G. B. Varile, A. Zaenen, A. Zampolli, and V.
Zue. Springer Berlin Heidelberg, 1997. Chap. 4, pp. 139–163.

[114] E. H. Hovy. “Planning Coherent Multisentential Text”. In: Proceedings of 26th
Annual Meeting of the Association for Computational Linguistics, 7-10 June
1988, State Univerity of New York at Buffalo, Buffalo, New York, USA. Ed. by
J. R. Hobbs. ACL, 1988, pp. 163–169.

[115] B. Howald, R. Kondadadi, and F. Schilder. “Domain Adaptable Semantic Clus-
tering in Statistical NLG”. In: Proceedings of the 10th International Confer-
ence on Computational Semantics, March 19-22, 2013, University of Potsdam,
Germany. ACL, 2013, pp. 143–154.

[116] M. Ihori, R. Masumura, N. Makishima, T. Tanaka, A. Takashima, and S.
Orihashi. “Memory Attentive Fusion: External Language Model Integration
for Transformer-based Sequence-to-Sequence Model”. In: Proceedings of the
13th International Conference on Natural Language Generation, INLG 2020,
Dublin, Ireland, December 15-18, 2020. Ed. by B. Davis, Y. Graham, J. D.
Kelleher, and Y. Sripada. Association for Computational Linguistics, 2020,
pp. 1–6.

[117] A. Isard and J. Knox. “Automatic Generation of Student Report Cards”. In:
Proceedings of the Ninth International Natural Language Generation Confer-
ence, INLG 2016, September 5-8, 2016, Edinburgh, UK. Ed. by A. Isard, V.
Rieser, and D. Gkatzia. Association for Computer Linguistics, 2016, pp. 207–
211.

[118] M. Jarrar, C. M. Keet, and P. Dongilli. Multilingual verbalization of ORM
conceptual models and axiomatized ontologies. Tech. rep. Belgium: Starlab,
Vrije Universiteit Brussel, Feb. 2006.

211

[119] J. Jawitz. The challenge of teaching large classes in higher education in South
Africa : a battle to be waged outside the classroom. Ed. by D. J. Hornsby, R.
Osman, and J. De Matos-ala. Cape Town: University of Cape Town, 2013.

[120] R. de Jong and M. Theune. “Going Dutch: Creating SimpleNLG-NL”. In: Pro-
ceedings of the 11th International Conference on Natural Language Generation,
Tilburg University, The Netherlands, November 5-8, 2018. Ed. by E. Krahmer,
A. Gatt, and M. Goudbeek. Association for Computational Linguistics, 2018,
pp. 73–78.

[121] J. Juraska and M. A. Walker. “Attention Is Indeed All You Need: Semanti-
cally Attention-Guided Decoding for Data-to-Text NLG”. In: Proceedings of
the 14th International Conference on Natural Language Generation, INLG
2021, Aberdeen, Scotland, UK, 20-24 September, 2021. Ed. by A. Belz, A.
Fan, E. Reiter, and Y. Sripada. Association for Computational Linguistics,
2021, pp. 416–431.

[122] S. Kahane. “The Meaning-Text Theory”. In: vol. 1. 25. De Gruyter, 2003,
pp. 546–570.

[123] M. Kale and A. Rastogi. “Template Guided Text Generation for Task-Oriented
Dialogue”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020.
Ed. by B. Webber, T. Cohn, Y. He, and Y. Liu. Association for Computational
Linguistics, 2020, pp. 6505–6520.

[124] K. Kaljurand and N. E. Fuchs. “Verbalizing OWL in Attempto Controlled
English”. In: Proceedings of the OWLED 2007 Workshop on OWL: Experiences
and Directions, Innsbruck, Austria, June 6-7, 2007. Ed. by C. Golbreich, A.
Kalyanpur, and B. Parsia. Vol. 258. CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[125] D. Kalpakchi and J. Boye. “BERT-based distractor generation for Swedish
reading comprehension questions using a small-scale dataset”. In: Proceedings
of the 14th International Conference on Natural Language Generation, INLG
2021, Aberdeen, Scotland, UK, 20-24 September, 2021. Ed. by A. Belz, A. Fan,
E. Reiter, and Y. Sripada. Association for Computational Linguistics, 2021,
pp. 387–403.

[126] Z. Kasner, S. Mille, and O. Dusek. “Text-in-Context: Token-Level Error Detec-
tion for Table-to-Text Generation”. In: Proceedings of the 14th International
Conference on Natural Language Generation, INLG 2021, Aberdeen, Scotland,
UK, 20-24 September, 2021. Ed. by A. Belz, A. Fan, E. Reiter, and Y. Sripada.
Association for Computational Linguistics, 2021, pp. 259–265.

[127] R. T. Kasper. “A Flexible Interface for Linking Applications to Penman’s Sen-
tence Generator”. In: Speech and Natural Language: Proceedings of a Workshop
Held at Philadelphia, USA, HLT 1989, February 21-23, 1989. ACL, 1989.

[128] F. Katamba. “Bantu Nominal Morphology”. In: The Bantu Languages. Ed. by
D. Nurse and G. Philippson. Routledge, 2014. Chap. 7, pp. 103–120.

212

[129] C. M. Keet. “An assessment of orthographic similarity measures for several
African languages”. In: CoRR abs/1608.03065 (2016).

[130] C. M. Keet. An Introduction to Ontology Engineering. University of Cape
Town, July 2018.

[131] C. M. Keet. “The African wildlife ontology tutorial ontologies”. In: Journal of
Biomedical Semantics 11.1 (2020), p. 4.

[132] C. M. Keet and A. Artale. “Representing and reasoning over a taxonomy of
part-whole relations”. In: Appl. Ontology 3.1-2 (2008), pp. 91–110.

[133] C. M. Keet and L. Khumalo. “Toward Verbalizing Ontologies in isiZulu”. In:
Proc. of CNL’014. Ed. by B. Davis, K. Kaljurand, and T. Kuhn. Vol. 8625.
LNCS. August 20-22, Galway, Ireland. Springer, 2014, pp. 78–89.

[134] C. M. Keet and L. Khumalo. “On the verbalization patterns of part-whole
relations in isiZulu”. In: Proceedings of the Ninth International Natural Lan-
guage Generation Conference, INLG 2016, September 5-8, 2016, Edinburgh,
UK. Ed. by A. Isard, V. Rieser, and D. Gkatzia. Association for Computer
Linguistics, 2016, pp. 174–183.

[135] C. M. Keet and L. Khumalo. “Grammar Rules for the isiZulu Complex Verb”.
In: Southern African Linguistics and Applied Language Studies 35.2 (2017),
pp. 183–200.

[136] C. M. Keet and L. Khumalo. “Toward a Knowledge-to-Text Controlled Natu-
ral Language of isiZulu”. In: Language Resources and Evaluation 51.1 (2017),
pp. 131–157.

[137] C. M. Keet, Z. Mahlaza, and M.-J. Antia. “CLaRO: A Controlled Language for
Authoring Competency Questions”. In: Garoufallou E., Fallucchi F., William
De Luca E. (eds) Metadata and Semantic Research. MTSR2019. Communica-
tions in Computer and Information Science, vol 1057. Springer, Cham., 2019,
pp. 3–15.

[138] C. M. Keet, M. Xakaza, and L. Khumalo. “Verbalising OWL ontologies in
isiZulu with Python”. In: The Semantic Web: ESWC 2017 Satellite Events.
Ed. by E. Blomqvist, K. Hose, H. Paulheim, A. Lawrynowicz, F. Ciravegna,
and O. Hartig. Vol. 10577. LNCS. 30 May - 1 June 2017, Portoroz, Slovenia.
Springer, 2017, pp. 59–64.

[139] R. Kittredge, A. Polguère, and E. Goldberg. “Synthesizing Weather Forecasts
from Formated Data”. In: Proceedings of the 11th Coference on Computational
Linguistics. COLING ’86. Bonn, Germany: Association for Computational Lin-
guistics, 1986, pp. 563–565.

[140] K. Knight and V. Hatzivassiloglou. “Two-level, Many-Paths Generation”. In:
CoRR abs/cmp-lg/9506010 (1995). arXiv: cmp-lg/9506010.

213

https://arxiv.org/abs/cmp-lg/9506010

[141] J. Knox. “Playing with student data: The learning analytics report card (LARC)”.
In: Proceedings of the of the 7th International Learning Analytics & Knowledge
Conference (LAK17): Practitioner Track. Vancouver, Canada: The Society for
Learning Analytics Research, Mar. 2017, pp. 43–49.

[142] P. Koehn, F. J. Och, and D. Marcu. “Statistical Phrase-Based Translation”.
In: Human Language Technology Conference of the North American Chapter of
the Association for Computational Linguistics, HLT-NAACL 2003, Edmonton,
Canada, May 27 - June 1, 2003. Association of Computational Linguistics,
2003.

[143] R. Kondadadi, B. Howald, and F. Schilder. “A Statistical NLG Framework
for Aggregated Planning and Realization”. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, 4-9 August 2013,
Sofia, Bulgaria. ACL, 2013, pp. 1406–1415.

[144] R. Kondadadi, B. Howald, and F. Schilder. “A Statistical NLG Framework
for Aggregated Planning and Realization”. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, ACL 2013, 4-9 Au-
gust 2013, Sofia, Bulgaria, Volume 1: Long Papers. ACL, 2013, pp. 1406–1415.

[145] Á. Kovács, E. Ács, J. Ács, A. Kornai, and G. Recski. “BME-UW at SRST-2019:
Surface realization with Interpreted Regular Tree Grammars”. In: Proceedings
of the 2nd Workshop on Multilingual Surface Realisation, MSR@EMNLP-
IJCNLP 2019, Hong Kong, China, November 3, 2019. Ed. by S. Mille, A.
Belz, B. Bohnet, Y. Graham, and L. Wanner. Association for Computational
Linguistics, 2019, pp. 35–40.

[146] Z. Kuanzhuo, L. Lin, and W. Zhao. “SimpleNLG-TI: Adapting SimpleNLG
to Tibetan”. In: Proceedings of the 13th International Conference on Natural
Language Generation, INLG 2020, Dublin, Ireland, December 15-18, 2020.
Association for Computational Linguistics, 2020, pp. 86–90.

[147] K. Kuratowski. Introduction to set theory and topology. Pergamon Press, 2014.
[148] I. Langkilde. “Forest-Based Statistical Sentence Generation”. In: 6th Applied

Natural Language Processing Conference, ANLP 2000, Seattle, Washington,
USA, April 29 - May 4, 2000. Association of Computational Linguistics, 2000,
pp. 170–177.

[149] I. Langkilde-Geary and K. Knight. “HALogen Statistical Sentence Generator”.
In: Proceedings of the 40th Annual Meeting of the Association for Computa-
tional Linguistics (Demonstrations Session), July 6-12, 2002, Philadelphia,
PA, USA. 2002, pp. 102–103.

[150] G. Lapalme. “The jsRealB Text Realizer: Organization and Use Cases”. In:
CoRR (2020). arXiv: 2012.15425.

214

https://arxiv.org/abs/2012.15425

[151] F. Lareau, F. Lambrey, I. Dubinskaite, D. Galarreta-Piquette, and M. Nejat.
“GenDR: A Generic Deep Realizer with Complex Lexicalization”. In: Proceed-
ings of the Eleventh International Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European Lan-
guage Resources Association (ELRA), 2018.

[152] B. Lavoie, R. I. Kittredge, T. Korelsky, and O. Rambow. “A Framework for
MT and Multilingual NLG Systems Based on Uniform Lexico-Structural Pro-
cessing”. In: 6th Applied Natural Language Processing Conference, ANLP 2000,
Seattle, Washington, USA, April 29 - May 4, 2000. ACL, 2000, pp. 60–67.

[153] B. Lavoie and O. Rainbow. “A Fast and Portable Realizer for Text Generation
Systems”. In: 5th Applied Natural Language Processing Conference, ANLP
1997, Marriott Hotel, Washington, USA, March 31 - April 3, 1997. ACL,
1997, pp. 265–268.

[154] R. Lebret, D. Grangier, and M. Auli. “Neural Text Generation from Structured
Data with Application to the Biography Domain”. In: Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016. Ed. by J. Su, X. Carreras, and
K. Duh. The Association for Computational Linguistics, 2016, pp. 1203–1213.

[155] J. Lee. “Stable Style Transformer: Delete and Generate Approach with Encoder-
Decoder for Text Style Transfer”. In: Proceedings of the 13th International
Conference on Natural Language Generation, INLG 2020, Dublin, Ireland,
December 15-18, 2020. Ed. by B. Davis, Y. Graham, J. D. Kelleher, and Y.
Sripada. Association for Computational Linguistics, 2020, pp. 195–204.

[156] Y. Leng, F. Portet, C. Labbé, and R. Qader. “Controllable Neural Natural
Language Generation: comparison of state-of-the-art control strategies”. In:
Proceedings of the 3rd International Workshop on Natural Language Genera-
tion from the Semantic Web (WebNLG+). Dublin, Ireland (Virtual): Associa-
tion for Computational Linguistics, Dec. 2020, pp. 34–39.

[157] F. Liang, R. Stevens, and A. L. Rector. “OntoVerbal-M: a Multilingual Ver-
baliser for SNOMED CT”. In: Proceedings of the 2nd International Workshop
on the Multilingual Semantic Web, Bonn, Germany, October 23, 2011. Ed. by
E. Montiel-Ponsoda, J. P. McCrae, P. Buitelaar, and P. Cimiano. Vol. 775.
CEUR Workshop Proceedings. CEUR-WS.org, 2011, pp. 13–24.

[158] S. F. Liang, D. Scott, R. Stevens, and A. L. Rector. “OntoVerbal: a Generic
Tool and Practical Application to SNOMED CT”. In: CoRR abs/1312.2798
(2013). arXiv: 1312.2798.

[159] S. F. Liang, R. Stevens, D. Scott, and A. L. Rector. “Automatic Verbalisation
of SNOMED Classes Using OntoVerbal”. In: Artificial Intelligence in Medicine
- 13th Conference on Artificial Intelligence in Medicine, AIME 2011, Bled,
Slovenia, July 2-6, 2011. Proceedings. Ed. by M. Peleg, N. Lavrac, and C.
Combi. Vol. 6747. Lecture Notes in Computer Science. Springer, 2011, pp. 338–
342.

215

https://arxiv.org/abs/1312.2798

[160] S. H. Lim and T. A. Halpin. “Automated Verbalization of ORM Models in
Malay and Mandarin”. In: International Journal of Information System Mod-
eling and Design 7.4 (2016), pp. 1–16.

[161] Y. Liu and M. Lapata. “Text Summarization with Pretrained Encoders”. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019.
Ed. by K. Inui, J. Jiang, V. Ng, and X. Wan. Association for Computational
Linguistics, 2019, pp. 3728–3738.

[162] Y. Lu, Z. Li, D. He, Z. Sun, B. Dong, T. Qin, L. Wang, and T. Liu. “Under-
standing and Improving Transformer From a Multi-Particle Dynamic System
Point of View”. In: CoRR abs/1906.02762 (2019). arXiv: 1906.02762.

[163] O. Lyudovyk and C. Weng. “SNOMEDtxt: Natural Language Generation from
SNOMED Ontology”. In: MEDINFO 2019: Health and Wellbeing e-Networks
for All - Proceedings of the 17th World Congress on Medical and Health In-
formatics, Lyon, France, 25-30 August 2019. Ed. by L. Ohno-Machado and B.
Séroussi. Vol. 264. Studies in Health Technology and Informatics. IOS Press,
2019, pp. 1263–1267.

[164] A. Madsack, J. Heininger, N. Davaasambuu, V. Voronik, M. Käufl, and R.
Weißgraeber. “AX Semantics’ Submission to the Surface Realization Shared
Task 2018”. In: Proceedings of the First Workshop on Multilingual Surface
Realisation. Melbourne, Australia: Association for Computational Linguistics,
July 2018, pp. 54–57.

[165] S. Mahamood and M. Zembrzuski. “Hotel Scribe: Generating High Variation
Hotel Descriptions”. In: Proceedings of the 12th International Conference on
Natural Language Generation, INLG 2019, Tokyo, Japan, October 29 - Novem-
ber 1, 2019. 2019, pp. 391–396.

[166] Z. Mahlaza and C. M. Keet. “Formalisation and classification of grammar and
template-mediated techniques to model and ontology verbalisation”. In: Inter-
national Journal of Metadata, Semantics and Ontologies 14.3 (2020), pp. 249–
262.

[167] Z. Mahlaza and C. M. Keet. “Measuring Verb Similarity Using Binary Coeffi-
cients with Application to isiXhosa and isiZulu”. In: Proceedings of the Annual
Conference of the South African Institute of Computer Scientists and Infor-
mation Technologists. SAICSIT ’18. Port Elizabeth, South Africa: ACM, 2018,
pp. 65–71.

[168] Z. Mahlaza and C. M. Keet. “A classification of grammar-infused templates
for ontology and model verbalisation”. In: Metadata and Semantic Research -
13th International Conference, MTSR 2019, Rome, Italy, October 28-31, 2019.
2019.

216

https://arxiv.org/abs/1906.02762

[169] Z. Mahlaza and C. M. Keet. “OWLSIZ: An isiZulu CNL for structured knowl-
edge validation”. In: Proceedings of the 3rd International Workshop on Natural
Language Generation from the Semantic Web (WebNLG+). Dublin, Ireland
(Virtual): Association for Computational Linguistics, Dec. 2020, pp. 15–25.

[170] Z. Mahlaza and C. M. Keet. “Surface Realisation Architecture for Low-Resourced
African Languages”. In: ACM Trans. Asian Low-Resour. Lang. Inf. Process.
(Oct. 2022). Just Accepted.

[171] Z. Mahlaza, C. M. Keet, J. Dunn, and M. Poulter. “An evaluation of template
and ML-based generation of user-readable text from a knowledge graph”. In:
CoRR abs/2106.14613 (2021). arXiv: 2106.14613.

[172] J. Maho. A Comparative Study of Bantu Noun Classes. Acta Universitatis
Gothoburgunsis, 1999.

[173] J. Maho. NUGL OnlineThe online version of the New Updated Guthrie List,
a referential classification of the Bantu languages. https : / / brill . com /
fileasset/downloads_products/35125_Bantu- New- updated- Guthrie-
List.pdf. Accessed: 25 August 2021. 2009.

[174] J. Maho. “A classification of the Bantu Languages: An Update of Guthrie’s
referential system”. In: The Bantu Languages. Ed. by D. Nurse and G. Philipp-
son. Routledge, 2014. Chap. 7, pp. 639–651.

[175] F. Mairesse, M. Gasic, F. Jurcı́cek, S. Keizer, B. Thomson, K. Yu, and S. J.
Young. “Phrase-Based Statistical Language Generation Using Graphical Mod-
els and Active Learning”. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, ACL 2010, July 11-16, 2010, Up-
psala, Sweden. Ed. by J. Hajic, S. Carberry, and S. Clark. Association for
Computer Linguistics, 2010, pp. 1552–1561.

[176] J. H. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. “The
Scratch Programming Language and Environment”. In: ACM Transactions on
Computing Education 10.4 (2010), 16:1–16:15.

[177] W. C. Mann and C. M. Matthiessen. Nigel: A Systemic Grammar for Text
Generation. Tech. rep. ISI/RR-83-105. Information Sciences Institute, Uni-
veristy of Southern California, Marina Del Rey, USA, 1983.

[178] W. C. Mann. “An Overview of the Nigel Text Generation Grammar”. In:
21st Annual Meeting of the Association for Computational Linguistics, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, USA, June 15-
17, 1983. Ed. by M. P. Marcus. ACL, 1983, pp. 79–84.

[179] W. C. Mann. “An Overview of the Penman Text Generation System”. In:
Proceedings of the National Conference on Artificial Intelligence, Washington,
D.C., USA, August 22-26, 1983. Ed. by M. R. Genesereth. AAAI Press, 1983,
pp. 261–265.

217

https://arxiv.org/abs/2106.14613
https://brill.com/fileasset/downloads_products/35125_Bantu-New-updated-Guthrie-List.pdf
https://brill.com/fileasset/downloads_products/35125_Bantu-New-updated-Guthrie-List.pdf
https://brill.com/fileasset/downloads_products/35125_Bantu-New-updated-Guthrie-List.pdf

[180] W. C. Mann, M. Bates, B. Grosz, D. D. McDonald, K. R. Mckeown, and W.
Swartout. “Text Generation”. In: American Journal of Computational Linguis-
tics 8.2 (1982), pp. 62–69.

[181] L. Marais. “Approximating a Zulu GF concrete syntax with a neural network
for natural language understanding”. In: Proc. of CNL 2020/21. Amsterdam,
Netherlands: Association for Computational Linguistics, Sept. 2021.

[182] T. Marciniak and M. Strube. “Classification-Based Generation Using TAG”.
In: Proceedings on the Third International Conference on Natural Language
Generation, INLG 2004, Brockenhurst, UK, July 14-16, 2004. Ed. by A.
Belz, R. Evans, and P. Piwek. Vol. 3123. Lecture Notes in Computer Science.
Springer, 2004, pp. 100–109.

[183] L. Martinus and J. Z. Abbott. “A Focus on Neural Machine Translation
for African Languages”. In: arXiv e-prints (June 2019). arXiv: 1906.05685
[cs.CL].

[184] J. May and J. Priyadarshi. “SemEval-2017 Task 9: Abstract Meaning Repre-
sentation Parsing and Generation”. In: Proceedings of the 11th International
Workshop on Semantic Evaluation, SemEval@ACL 2017, Vancouver, Canada,
August 3-4, 2017. Ed. by S. Bethard, M. Carpuat, M. Apidianaki, S. M. Mo-
hammad, D. M. Cer, and D. Jurgens. Association for Computational Linguis-
tics, 2017, pp. 536–545.

[185] A. Mazzei and V. Basile. “The DipInfoUniTo Realizer at SRST’19: Learning to
Rank and Deep Morphology Prediction for Multilingual Surface Realization”.
In: Proceedings of the 2nd Workshop on Multilingual Surface Realisation (MSR
2019). Hong Kong, China: Association for Computational Linguistics, Nov.
2019, pp. 81–87.

[186] A. Mazzei, C. Battaglino, and C. Bosco. “SimpleNLG-IT: Adapting Sim-
pleNLG to Italian”. In: Proceedings of the Ninth International Conference on
Natural Language Generation, INLG 2016, September 5-8, 2016, Edinburgh,
UK. Association for Computational Linguistics, 2016, pp. 184–192.

[187] J. McCrae, G. Aguado-de-Cea, P. Buitelaar, P. Cimiano, T. Declerck, A.
Gómez Pérez, J. Gracia, L. Hollink, E. Montiel-Ponsoda, D. Spohr, et al. The
lemon cookbook. Tech. rep. Monnet Project, June 2012.

[188] K. McKeown. Text generation. Cambridge University Press, 1992.
[189] J. McLaren. A Xhosa Grammar, Revised and Re-Written in the New Orthog-

raphy, Edited by G. H. Welsh. Longmans, Green and Company, 1944.
[190] S. W. McRoy, S. Channarukul, and S. S. Ali. “YAG: A Template-based Gener-

ator for Real-time Systems”. In: Proceedings of the First International Confer-
ence on Natural Language Generation - Volume 14. INLG ’00. Mitzpe Ramon,
Israel: Association for Computational Linguistics, 2000, pp. 264–267.

218

https://arxiv.org/abs/1906.05685
https://arxiv.org/abs/1906.05685

[191] S. W. McRoy, S. Channarukul, and S. S. Ali. “An augmented template-based
approach to text realization”. In: Natural Language Engineering 9.4 (2003),
pp. 381–420.

[192] A. E. Meeussen. “Bantu Grammatical Reconstructions”. In: Africana linguis-
tica 3.1 (1967), pp. 79–121.

[193] I. Melcuk. Dependency Syntax: Theory and Practice. SUNY press, 1988.
[194] C. Mellish and J. Z. Pan. “Finding Subsumers for Natural Language Presen-

tation”. In: Proceedings of the 2006 International Workshop on Description
Logics (DL2006), Windermere, Lake District, UK, May 30 - June 1, 2006.
Ed. by B. Parsia, U. Sattler, and D. Toman. Vol. 189. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2006.

[195] C. Mellish and J. Z. Pan. “Natural language directed inference from ontolo-
gies”. In: Artif. Intell. 172.10 (2008), pp. 1285–1315.

[196] C. Mellish, D. Scott, L. J. Cahill, D. S. Paiva, R. Evans, and M. Reape. “A
Reference Architecture for Natural Language Generation Systems”. In: Nat.
Lang. Eng. 12.1 (2006), pp. 1–34.

[197] S. Mille, A. Belz, B. Bohnet, Y. Graham, E. Pitler, and L. Wanner. “The First
Multilingual Surface Realisation Shared Task (SR’18): Overview and Evalua-
tion Results”. In: Proceedings of the First Workshop on Multilingual Surface
Realisation. Melbourne, Australia: Association for Computational Linguistics,
July 2018, pp. 1–12.

[198] S. Mille, A. Belz, B. Bohnet, Y. Graham, and L. Wanner. “The Second Multi-
lingual Surface Realisation Shared Task (SR’19): Overview and Evaluation Re-
sults”. In: Proceedings of the 2nd Workshop on Multilingual Surface Realisation
(MSR 2019). Hong Kong, China: Association for Computational Linguistics,
Nov. 2019, pp. 1–17.

[199] S. Mille, A. Belz, B. Bohnet, T. Castro Ferreira, Y. Graham, and L. Wanner.
“The Third Multilingual Surface Realisation Shared Task (SR’20): Overview
and Evaluation Results”. In: Proceedings of the Third Workshop on Multilingual
Surface Realisation. Barcelona, Spain (Online): Association for Computational
Linguistics, Dec. 2020, pp. 1–20.

[200] P. Molins and G. Lapalme. “JSrealB: A Bilingual Text Realizer for Web Pro-
gramming”. In: ENLG 2015 - Proceedings of the 15th European Workshop on
Natural Language Generation, 10-11 September 2015, University of Brighton,
Brighton, UK. Association for Computer Linguistics, 2015, pp. 109–111.

[201] C. Moors, I. Wilken, K. Calteaux, and T. Gumede. “Human Language Technol-
ogy Audit 2018: Analysing the Development Trends in Resource Availability in
All South African Languages”. In: Proceedings of the Annual Conference of the
South African Institute of Computer Scientists and Information Technologists.
SAICSIT ’18. Port Elizabeth, South Africa: ACM, 2018, pp. 296–304.

219

[202] A. Moryossef, Y. Goldberg, and I. Dagan. “Step-by-Step: Separating Planning
from Realization in Neural Data-to-Text Generation”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers).
Ed. by J. Burstein, C. Doran, and T. Solorio. Association for Computational
Linguistics, 2019, pp. 2267–2277.

[203] N. Mtsatse and C. Combrinck. “Dialects matter: The influence of dialects and
code-switching on the literacy and numeracy achievements of isiXhosa Grade
1 learners in the Western Cape”. In: Journal of Education 72 (2018), pp. 21–37.

[204] S. Naidoo. “The palatalisation process in isiZulu revisited”. In: South African
Journal of African Languages 22.1 (2002), pp. 59–69.

[205] H. Nakanishi, Y. Miyao, and J. Tsujii. “Probabilistic Models for Disambigua-
tion of an HPSG-Based Chart Generator”. In: Proceedings of the Ninth Inter-
national Workshop on Parsing Technology, IWPT 2005, Vancouver, Canada,
October 9-10, 2005. Ed. by H. Bunt, R. Malouf, and A. Lavie. Association for
Computational Linguistics, 2005, pp. 93–102.

[206] S. Narayan and C. Gardent. Deep Learning Approaches to Text Production.
Morgan & Claypool Publishers, 2020.

[207] W. Ng’ang’a. “Building Swahili Resource Grammars for the Grammatical
Framework”. In: Shall We Play the Festschrift Game? Essays on the Occa-
sion of Lauri Carlson’s 60th Birthday. Ed. by D. Santos, K. Lindén, and W.
Ng’ang’a. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 215–226.

[208] A.-C. Ngonga Ngomo, D. Moussallem, and L. Bühmann. “A Holistic Natural
Language Generation Framework for the Semantic Web”. In: arXiv preprint
arXiv:1911.01248 (2019).

[209] V. Nguyen, T. C. Son, and E. Pontelli. “Natural Language Generation from
Ontologies”. In: Proceedings on the 21th International Symposium on Practical
Aspects of Declarative Languages, PADL 2019, Lisbon, Portugal, January 14-
15, 2019. Ed. by J. J. Alferes and M. Johansson. Vol. 11372. Lecture Notes in
Computer Science. Springer, 2019, pp. 64–81.

[210] V. S. Nomlomo. “Language variation in the Transkeian Xhosa speech commu-
nity and its impact on children’s education”. MA thesis. University of Cape
Town, 1993.

[211] J. Novikova, O. Dusek, and V. Rieser. “The E2E Dataset: New Challenges For
End-to-End Generation”. In: Proceedings of the 18th Annual SIGdial Meeting
on Discourse and Dialogue, Saarbrücken, Germany, August 15-17, 2017. Ed.
by K. Jokinen, M. Stede, D. DeVault, and A. Louis. Association for Compu-
tational Linguistics, 2017, pp. 201–206.

[212] E. Nyoni and B. A. Bassett. “Low-Resource Neural Machine Translation for
Southern African Languages”. In: arXiv e-prints (Apr. 2021). arXiv: 2104.
00366 [cs.CL].

220

https://arxiv.org/abs/2104.00366
https://arxiv.org/abs/2104.00366

[213] J. Obeid and E. Hoque. “Chart-to-Text: Generating Natural Language De-
scriptions for Charts by Adapting the Transformer Model”. In: Proceedings
of the 13th International Conference on Natural Language Generation, INLG
2020, Dublin, Ireland, December 15-18, 2020. Ed. by B. Davis, Y. Graham,
J. D. Kelleher, and Y. Sripada. Association for Computational Linguistics,
2020, pp. 138–147.

[214] J. Oosthuysen. The Grammar of isiXhosa. SUN press, 2017.
[215] D. M. Oppenheimer, T. Meyvis, and N. Davidenko. “Instructional manipula-

tion checks: Detecting satisficing to increase statistical power”. In: Journal of
Experimental Social Psychology 45.4 (2009), pp. 867–872.

[216] S. Packham and H. Suleman. “Crowdsourcing a Text Corpus is not a Game”.
In: Digital Libraries: Providing Quality Information - 17th International Con-
ference on Asia-Pacific Digital Libraries, ICADL 2015, Seoul, Korea, Decem-
ber 9-12, 2015, Proceedings. Ed. by R. B. Allen, J. Hunter, and M. L. Zeng.
Vol. 9469. Lecture Notes in Computer Science. Springer, 2015, pp. 225–234.

[217] G. B. Palmer and C. Woodman. “Ontological classifiers as polycentric cate-
gories, as seen in Shona class 3 nouns”. In: Explorations in Linguistic Relativity.
Ed. by M. Pütz and M. Verspoor. John Benjamins Publishing company, 2000.
Chap. 12, pp. 225–249.

[218] K. Papineni, S. Roukos, T. Ward, and W. Zhu. “Bleu: a Method for Auto-
matic Evaluation of Machine Translation”. In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, July 6-12, 2002,
Philadelphia, PA, USA. ACL, 2002, pp. 311–318.

[219] A. P. Parikh, X. Wang, S. Gehrmann, M. Faruqui, B. Dhingra, D. Yang, and
D. Das. “ToTTo: A Controlled Table-To-Text Generation Dataset”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020. Ed. by B. Webber,
T. Cohn, Y. He, and Y. Liu. Association for Computational Linguistics, 2020,
pp. 1173–1186.

[220] L. Perez-Beltrachini and M. Lapata. “Bootstrapping Generators from Noisy
Data”. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Vol-
ume 1 (Long Papers). Ed. by M. A. Walker, H. Ji, and A. Stent. Association
for Computational Linguistics, 2018, pp. 1516–1527.

[221] P. Piwek. “A Flexible Pragmatics-Driven Language Generator for Animated
Agents”. In: Proceedings of the 10th Conference of the European Chapter of
the Association for Computational Linguistics, EACL 2003, April 12-17, 2003,
Agro Hotel, Budapest, Hungary. Association for Computer Linguistics, 2003,
pp. 151–154.

221

[222] L. Posthumus. A systemized explanation for vowel phoneme change in the inad-
missible phonological structure /VV/ in Zulu. Working paper. Johannesburg,
South Africa: University of Johannesburg, Dec. 2016.

[223] M. Poveda-Villalón, A. Gómez-Pérez, and M. C. Suárez-Figueroa. “Oops!(Ontology
Pitfall Scanner!): An on-Line Tool for Ontology Evaluation”. In: International
Journal on Semantic Web and Information Systems (IJSWIS) 10.2 (2014),
pp. 7–34.

[224] R. Power. “Towards a Generation-Based Semantic Web Authoring Tool”. In:
Proceedings of the 12th European Workshop on Natural Language Generation,
ENLG 2009, March 30-31, 2009, Athens, Greece. Ed. by E. Krahmer and M.
Theune. The Association for Computer Linguistics, 2009, pp. 9–15.

[225] R. Power. “OWL Simplified English: A Finite-State Language for Ontology
Editing”. In: Controlled Natural Language - Third International Workshop,
CNL 2012, Zurich, Switzerland, August 29-31, 2012. Proceedings. Lecture
Notes in Artificial Intelligence. Springer, 2012, pp. 44–60.

[226] R. Power and A. Third. “Expressing OWL axioms by English sentences: du-
bious in theory, feasible in practice”. In: Proceedings of the 23rd International
Conference on Computational Linguistics, COLING 2010, Posters Volume,
23-27 August 2010, Beijing, China. Ed. by C. Huang and D. Jurafsky. Chi-
nese Information Processing Society of China, 2010, pp. 1006–1013.

[227] L. Pretorius and S. Bosch. “Finite State Morphology of the Nguni Language
Cluster: Modelling and Implementation Issues”. In: Finite-State Methods and
Natural Language Processing. Ed. by A. Yli-Jyrä, A. Kornai, J. Sakarovitch,
and B. Watson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 123–
130.

[228] L. Pretorius and S. Bosch. ZulMorph. https : / / portal . sadilar . org /
FiniteState/. 2019.

[229] L. Pretorius, L. Marais, and A. Berg. “A GF miniature resource grammar for
Tswana: modelling the proper verb”. In: Language Resources and Evaluation
51.1 (Mar. 2017), pp. 159–189.

[230] J. Proskurnia, M. Cartright, L. G. Pueyo, I. Krka, J. B. Wendt, T. Kaufmann,
and B. Miklos. “Template Induction over Unstructured Email Corpora”. In:
Proceedings of the 26th International Conference on World Wide Web, WWW
2017, Perth, Australia, April 3-7, 2017. Ed. by R. Barrett, R. Cummings, E.
Agichtein, and E. Gabrilovich. ACM, 2017, pp. 1521–1530.

[231] R. Puduppully, L. Dong, and M. Lapata. “Data-to-Text Generation with Con-
tent Selection and Planning”. In: The Thirty-Third AAAI Conference on Ar-
tificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019. AAAI Press, 2019, pp. 6908–6915.

222

https://portal.sadilar.org/FiniteState/
https://portal.sadilar.org/FiniteState/

[232] Y. Puzikov and I. Gurevych. “BinLin: A Simple Method of Dependency Tree
Linearization”. In: Proceedings of the First Workshop on Multilingual Surface
Realisation. Melbourne, Australia: Association for Computational Linguistics,
July 2018, pp. 13–28.

[233] R. Rajkumar, D. Espinosa, and M. White. “The OSU System for Surface Re-
alization at Generation Challenges 2011”. In: ENLG 2011 - Proceedings of the
13th European Workshop on Natural Language Generation, 28-30 September
2011, Nancy, France. Ed. by C. Gardent and K. Striegnitz. The Association
for Computer Linguistics, 2011, pp. 236–238.

[234] A. Ramos-Soto, A. J. B. Diz, S. Barro, and J. Taboada. “Linguistic Descrip-
tions for Automatic Generation of Textual Short-Term Weather Forecasts on
Real Prediction Data”. In: IEEE Transactions on Fuzzy Systems 23.1 (2015),
pp. 44–57.

[235] A. Ramos-Soto, J. J. Gallardo, and A. J. B. Diz. “Adapting SimpleNLG to
Spanish”. In: Proceedings of the 10th International Conference on Natural Lan-
guage Generation, INLG 2017, Santiago de Compostela, Spain, September 4-7,
2017. Association for Computational Linguistics, 2017, pp. 144–148.

[236] A. Ranta. Grammatical framework: Programming with multilingual grammars.
CSLI Publications, Center for the Study of Language and Information Stan-
ford, 2011.

[237] G. Recski, Á. Kovács, K. Gémes, J. Ács, and A. Kornai. “BME-TUW at SR’20:
Lexical grammar induction for surface realization”. In: Proceedings of the Third
Workshop on Multilingual Surface Realisation. Barcelona, Spain (Online): As-
sociation for Computational Linguistics, Dec. 2020, pp. 21–29.

[238] A. L. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. “OWL Pizzas: Practical Experience of Teaching OWL-
DL: Common Errors & Common Patterns”. In: Engineering Knowledge in the
Age of the Semantic Web, 14th International Conference, EKAW 2004, Whit-
tlebury Hall, UK, October 5-8, 2004, Proceedings. Ed. by E. Motta, N. Shad-
bolt, A. Stutt, and N. Gibbins. Vol. 3257. Lecture Notes in Computer Science.
Springer, 2004, pp. 63–81.

[239] R. Reddy. Speech understanding systems: summary of results of the five-year
research effort at Carnegie-Mellon University. Tech. rep. Department of Com-
puter Science, Carnegie-Mellon University, 1977.

[240] M. Reid, J. Hu, G. Neubig, and Y. Matsuo. “AfroMT: Pretraining Strategies
and Reproducible Benchmarks for Translation of 8 African Languages”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
7-11 November, 2021. Ed. by M. Moens, X. Huang, L. Specia, and S. W. Yih.
Association for Computational Linguistics, 2021, pp. 1306–1320.

223

[241] E. Reiter. “Has a Consensus NL Generation Architecture Appeared, and is it
Psycholinguistically Plausible?” In: Proceedings of the Seventh International
Workshop on Natural Language Generation, INLG 1994, Kennebunkport, Maine,
USA, June 21-24, 1994. Association for Computational Linguistics, 1994.

[242] E. Reiter. “An Architecture for Data-to-Text Systems”. In: Proceedings of the
Eleventh European Workshop on Natural Language Generation, ENLG 2007,
Schloss Dagstuhl, Germany, June 17-20, 2007. Ed. by S. Busemann. 2007.

[243] E. Reiter. Hallucination in Neural NLG. https://ehudreiter.com/2018/
11/12/hallucination-in-neural-nlg/. Accessed: 2022-06-13.

[244] E. Reiter and S. Sripada. “Should Corpora Texts Be Gold Standards for NLG?”
In: Proceedings of the International Natural Language Generation Conference,
Harriman, New York, USA, July 2002. Association for Computational Lin-
guistics, 2002, pp. 97–104.

[245] Y. Ren, A. Parvizi, C. Mellish, J. Z. Pan, K. van Deemter, and R. Stevens. “To-
wards Competency Question-Driven Ontology Authoring”. In: The Semantic
Web: Trends and Challenges. Ed. by V. Presutti, C. d’Amato, F. Gandon, M.
d’Aquin, S. Staab, and A. Tordai. Cham: Springer International Publishing,
2014, pp. 752–767.

[246] D. Sadoun, S. Mkhitaryan, D. Nouvel, and M. Valette. “ReadME generation
from an OWL ontology describing NLP tools”. In: Proceedings of the 2nd In-
ternational Workshop on Natural Language Generation and the Semantic Web,
WebNLG 2016, Edinburgh, UK, September 6, 2016. Association for Computa-
tional Linguistics, 2016, pp. 46–49.

[247] Y. Safovich and A. Azaria. “Fiction Sentence Expansion and Enhancement via
Focused Objective and Novelty Curve Sampling”. In: 32nd IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD,
USA, November 9-11, 2020. IEEE, 2020, pp. 835–843.

[248] R. C. A. Samuelson. Zulu grammar. Durban: Knox, 1930.
[249] L. Sanby, I. Todd, and C. M. Keet. “Comparing the Template-Based Approach

to GF: the case of Afrikaans”. In: Proceedings of the 2nd International Work-
shop on Natural Language Generation and the Semantic Web, WebNLG 2016,
Edinburgh, UK, September 6, 2016. Association for Computational Linguistics,
2016, pp. 50–53.

[250] B. Sands. “Africa’s linguistic diversity”. In: Language and Linguistics Compass
3.2 (2009), pp. 559–580.

[251] A. Shimorina and C. Gardent. “Surface Realisation Using Full Delexicalisa-
tion”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019. Ed. by K. Inui, J. Jiang, V. Ng, and X. Wan. Association for Com-
putational Linguistics, 2019, pp. 3084–3094.

224

https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/
https://ehudreiter.com/2018/11/12/hallucination-in-neural-nlg/

[252] G. Sibanda. “Vowel processes in Nguni: Resolving the problem of unaccept-
able VV sequences”. In: Selected Proceedings of the 38th Annual Conference
on African Linguistics, Gainesville, Florida, March 22-25, 2007. Ed. by M.
Matondo, F. M. Laughlin, and E. Potsdam. Cascadilla Proceedings Project,
Somerville, Massachusetts, USA, 2007, pp. 38–55.

[253] N. E. Sigcau. “Educational implications of nonstandard varieties of Xhosa”.
MA thesis. University of Cape Town, 1998.

[254] E. Simperl, M. Mochol, and T. Bürger. “Achieving Maturity: the State of Prac-
tice in Ontology Engineering in 2009”. In: International Journal of Computer
Science and Applications 7.1 (2010), pp. 45–65.

[255] K. D. Smedt, H. Horacek, and M. Zock. “Architectures for Natural Language
Generation: Problems and Perspectives”. In: Trends in Natural Language Gen-
eration, An Artificial Intelligence Perspective, Fourth European Workshop,
EWNLG ’93, Pisa, Italy, April 28-30, 1993, Selected Papers. Ed. by G. Adorni
and M. Zock. Vol. 1036. Lecture Notes in Computer Science. Springer, 1993,
pp. 17–46.

[256] M. A. Sobrevilla Cabezudo and T. Pardo. “NILC-SWORNEMO at the Sur-
face Realization Shared Task: Exploring Syntax-Based Word Ordering using
Neural Models”. In: Proceedings of the First Workshop on Multilingual Surface
Realisation. Melbourne, Australia: Association for Computational Linguistics,
July 2018, pp. 58–64.

[257] M. A. Sobrevilla Cabezudo and T. Pardo. “NILC at SR’20: Exploring Pre-
Trained Models in Surface Realisation”. In: Proceedings of the Third Workshop
on Multilingual Surface Realisation. Barcelona, Spain (Online): Association for
Computational Linguistics, Dec. 2020, pp. 50–56.

[258] S. Spiegler, A. van der Spuy, and P. A. Flach. “Ukwabelana - An Open-Source
Morphological Zulu Corpus”. In: Proceedings of the 23rd International Confer-
ence on Computational Linguistics, 23-27 August 2010, Beijing, China. 2010,
pp. 1020–1028.

[259] R. E. Sripada S.G. and I. Davy. “SUMTIME-MOUSAM: Configurable Marine
Weather Forecast Generator”. In: Expert Update 6.3 (2003), pp. 4–10.

[260] S. Sripada, N. Burnett, R. Turner, J. Mastin, and D. Evans. “A Case Study:
NLG meeting Weather Industry Demand for Quality and Quantity of Textual
Weather Forecasts”. In: Proceedings of the Eighth International Natural Lan-
guage Generation Conference, Including Proceedings of the INLG and SIG-
DIAL 2014 Joint Session, 19-21 June 2014, Philadelphia, PA, USA. ACL,
2014, pp. 1–5.

[261] Statistics South Africa. Census 2011 : Census in brief. http://www.statssa.
gov.za/census/census_2011/census_products/Census_2011_Census_in_
brief.pdf. Accessed: 23 November 2017. 2012.

[262] Statistics South Africa. South African Census Community Profiles 2011. DataFirst,
2015.

225

http://www.statssa.gov.za/census/census_2011/census_products/Census_2011_Census_in_brief.pdf
http://www.statssa.gov.za/census/census_2011/census_products/Census_2011_Census_in_brief.pdf
http://www.statssa.gov.za/census/census_2011/census_products/Census_2011_Census_in_brief.pdf

[263] H. Stenzhorn. “XtraGen - A Natural Language Generation System Using
XML and Java-Technologies”. In: The 2nd Workshop on NLP and XML,
NLPXML@COLING 2002, Taipei, Taiwan, August 24 - September 1, 2002.
2002.

[264] R. Stevens, J. Malone, S. Williams, R. Power, and A. Third. “Automating
generation of textual class definitions from OWL to English”. In: Journal of
Biomedical Semantics 2.S-2 (2011), S5.

[265] A. Sudhakar, B. Upadhyay, and A. Maheswaran. “”Transforming” Delete, Re-
trieve, Generate Approach for Controlled Text Style Transfer”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Ed. by K.
Inui, J. Jiang, V. Ng, and X. Wan. Association for Computational Linguistics,
2019, pp. 3267–3277.

[266] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada. Ed. by Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence, and K. Q. Weinberger. 2014, pp. 3104–3112.

[267] E. Teich. Systemic functional grammar in natural language generation. Ed. by
R. Fawcett. Communication in artificial intelligence. London: Cassell, 1999.

[268] H. Thompson. “Strategy and tactics: A model for language production”. In:
Papers from the 13th Regional Meeting of the Chicago Linguistics Society,
Chicago, Illinois, USA. Ed. by W. Beach, S. Fox, and S. Philsoph. Vol. 13.
1977, pp. 651–668.

[269] B. D. Trisedya, J. Qi, and R. Zhang. “Sentence Generation for Entity Descrip-
tion with Content-Plan Attention”. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp. 9057–9064.

[270] D. Tsarkov and I. Horrocks. “FaCT++ Description Logic Reasoner: System
Description”. In: Automated Reasoning, Third International Joint Conference,
IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. Ed. by
U. Furbach and N. Shankar. Vol. 4130. Lecture Notes in Computer Science.
Springer, 2006, pp. 292–297.

[271] R. Turner, S. Sripada, E. Reiter, and I. P. Davy. “Generating Spatio-Temporal
Descriptions in Pollen Forecasts”. In: Proceedings of the 11st Conference of the
European Chapter of the Association for Computational Linguistics, EACL
2006, April 3-7, 2006, Trento, Italy. Ed. by D. McCarthy and S. Wintner.
Association for Computer Linguistics, 2006.

226

[272] K. Upasani, D. King, J. Rao, A. Balakrishnan, and M. White. “The OSU/-
Facebook Realizer for SRST 2019: Seq2Seq Inflection and Serialized Tree2Tree
Linearization”. In: Proceedings of the 2nd Workshop on Multilingual Surface
Realisation (MSR 2019). Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 68–74.

[273] K. van Deemter, M. Theune, and E. Krahmer. “Real versus Template-Based
Natural Language Generation: A False Opposition?” In: Computational Lin-
guistics 31.1 (2005), pp. 15–24.

[274] C. van der Lee, E. Krahmer, and S. Wubben. “PASS: A Dutch Data-to-Text
System for Soccer, Targeted towards Specific Audiences”. In: Proceedings of
the 10th International Conference on Natural Language Generation, INLG
2017, Santiago de Compostela, Spain, September 4-7, 2017. Association for
Computational Linguistics, 2017, pp. 95–104.

[275] A. Van der Spuy. “Bilabial Palatalisation in Zulu: A morphologically condi-
tioned phenomenon”. In: Stellenbosch Papers in Linguistics Plus 44 (2014),
pp. 71–87.

[276] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed. by
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett. 2017, pp. 5998–6008.

[277] P.-L. Vaudry and G. Lapalme. “Adapting SimpleNLG for Bilingual English-
French Realisation”. In: Proceedings of the 14th European Workshop on Natural
Language Generation, ENLG 2013, August 8-9, 2013, Sofia, Bulgaria. 2013,
pp. 183–187.

[278] H. Verhoef and A. Van Eeden. “Identifying the challenges of creating an op-
timal dissemination geography for census”. In: South African Journal of Geo-
matics 4.1 (2015), pp. 50–64.

[279] R. L. Walls, J. Deck, R. Guralnick, S. Baskauf, R. Beaman, S. Blum, S. Bow-
ers, P. L. Buttigieg, N. Davies, D. Endresen, M. A. Gandolfo, R. Hanner, A.
Janning, L. Krishtalka, A. Matsunaga, P. Midford, N. Morrison, É. Ó. Tuama,
M. Schildhauer, B. Smith, B. J. Stucky, A. Thomer, J. Wieczorek, J. Whitacre,
and J. Wooley. “Semantics in Support of Biodiversity Knowledge Discovery:
An Introduction to the Biological Collections Ontology and Related Ontolo-
gies”. In: PLOS ONE 9.3 (Mar. 2014), pp. 1–13.

[280] M. J. Weal, H. Alani, S. Kim, P. H. Lewis, D. E. Millard, P. A. S. Sinclair,
D. D. Roure, and N. R. Shadbolt. “Ontologies as facilitators for repurposing
web documents”. In: International Journal of Humman-Computuer Studies
65.6 (2007), pp. 537–562.

227

[281] R. Weißgraeber and A. Madsack. “A working, non-trivial, topically indiffer-
ent NLG System for 17 languages”. In: Proceedings of the 10th International
Conference on Natural Language Generation. Santiago de Compostela, Spain:
Association for Computational Linguistics, Sept. 2017, pp. 156–157.

[282] W. Welmers. African language structures. University of California Press, 1973.
[283] M. White. “CCG Chart Realization from Disjunctive Inputs”. In: Proceedings

of the Fourth International Natural Language Generation Conference, INLG
2006, July 15-16, 2006, Sydney, Australia. Ed. by N. Colineau, C. Paris, S.
Wan, R. Dale, and A. Belz. Association for Computer Linguistics, 2006, pp. 12–
19.

[284] M. White and T. Caldwell. “EXEMPLARS: A Practical, Extensible Frame-
work For Dynamic Text Generation”. In: Proceedings of the Ninth International
Workshop on Natural Language Generation, INLG 1998, Niagara-on-the-Lake,
Ontario, Canada, August 5-7, 1998. 1998.

[285] M. White, R. Rajkumar, and S. Martin. “Towards broad coverage surface
realization with CCG”. In: Proceedings of the Workshop on Using Corpora for
NLG: Language Generation and Machine Translation (UCNLG+ MT). 2007,
pp. 267–276.

[286] G. Wilcock. “Pipelines, Templates and Transformations: XML for Natural
Language Generation”. In: Proceedings of the first NLP and XML Workshop;
Workshop session of the 6th Natural Language Processing Pacific Rim Sym-
posium, November 27-30, 2001, Hitotsubashi Memorial Hall, National Center
of Sciences, Tokyo, Japan. 2001.

[287] S. Wiseman, S. M. Shieber, and A. M. Rush. “Challenges in Data-to-Document
Generation”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017. Ed. by M. Palmer, R. Hwa, and S. Riedel. Association for
Computational Linguistics, 2017, pp. 2253–2263.

[288] S. Wiseman, S. M. Shieber, and A. M. Rush. “Learning Neural Templates for
Text Generation”. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium, October 31 - November 4,
2018. Ed. by E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii. Association
for Computational Linguistics, 2018, pp. 3174–3187.

[289] Y. W. Wong. “Learning for Semantic Parsing and Natural Language Genera-
tion Using Statistical Machine Translation Techniques”. PhD thesis. Depart-
ment of Computer Sciences, University of Texas at Austin, Texas, 2007.

[290] X. Wu, T. Zhang, L. Zang, J. Han, and S. Hu. “Mask and Infill: Apply-
ing Masked Language Model for Sentiment Transfer”. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJ-
CAI 2019, Macao, China, August 10-16, 2019. Ed. by S. Kraus. ijcai.org,
2019, pp. 5271–5277.

228

[291] R. Yermakov, N. Drago, and A. Ziletti. “Biomedical Data-to-Text Genera-
tion via Fine-Tuning Transformers”. In: Proceedings of the 14th International
Conference on Natural Language Generation, INLG 2021, Aberdeen, Scotland,
UK, 20-24 September, 2021. Ed. by A. Belz, A. Fan, E. Reiter, and Y. Sripada.
Association for Computational Linguistics, 2021, pp. 364–370.

[292] X. Yu, A. Falenska, M. Haid, N. T. Vu, and J. Kuhn. “IMSurReal: IMS at the
Surface Realization Shared Task 2019”. In: Proceedings of the 2nd Workshop on
Multilingual Surface Realisation (MSR 2019). Hong Kong, China: Association
for Computational Linguistics, Nov. 2019, pp. 50–58.

[293] X. Yu, S. Tannert, N. T. Vu, and J. Kuhn. “IMSurReal Too: IMS in the
Surface Realization Shared Task 2020”. In: Proceedings of the Third Workshop
on Multilingual Surface Realisation. Barcelona, Spain (Online): Association for
Computational Linguistics, Dec. 2020, pp. 35–41.

[294] B. Zawada and M. N. Ngcobo. “A cognitive and corpus-linguistic re-analysis
of the acquisition of the Zulu noun class system”. In: Language Matters 39.2
(2008), pp. 316–331.

[295] C. Zhao, M. A. Walker, and S. Chaturvedi. “Bridging the Structural Gap Be-
tween Encoding and Decoding for Data-To-Text Generation”. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020. Ed. by D. Jurafsky, J. Chai, N. Schluter,
and J. R. Tetreault. Association for Computational Linguistics, 2020, pp. 2481–
2491.

229

	Introduction
	Computer systems for text generation
	Nguni languages
	Generating NCB languages
	Limits of existing surface realisers
	Problem statement
	Research questions and tasks
	Contextualisation of tasks
	Research approach
	Thesis outline

	Background
	IsiXhosa and isiZulu
	Noun classification systems
	Concordial agreement
	Phonological conditioning

	Natural language generation
	Data-to-text generation
	Existing work on African languages

	Knowledge-to-text generation
	Existing work on African languages

	Existing analysis of NLG system architectures
	Text realisation
	Classification of techniques
	Templates (T)
	Computational grammar rules (G)
	Data-driven models (DD)
	Templates and computational grammar rules (GT)
	Data-driven models and grammar rules (DDG)
	Data-driven models and templates (DDT)

	Summary

	Grammar-infused templates: combining template and grammar rules
	Gaps in existing augmented templates
	Pairing relationships
	Relationships

	Demonstration of relationships
	Categories of grammar-infused templates
	Classification of grammar-infused templates
	Demonstration of how to classify systems
	Utility
	Discussion
	Summary

	A task ontology for templates to support morphologically-rich languages
	Model development
	Competency questions
	Ontology creation
	The ontology's content
	Formalisation

	Ontologies and models for concord annotation
	Use and benefits of artefacts
	IsiZulu
	Catalan
	Other languages and benefits

	Discussion

	Knowledge-driven architecture for a maintainable surface realiser
	Collecting surface realisers for analysis
	Analysis criteria
	Surface realiser architectures and categories
	Limitations for Nguni languages
	Knowledge guided architecture
	Architecture maintainability
	Value of template ontology
	Inconsistencies
	Template comparison and reuse

	Summary

	Evaluation
	Evaluation strategy
	Surface realiser implementation
	Grammar engines
	Error detection
	Linearisation
	Validation

	IsiXhosa GALiWeather
	Methods and Materials
	Results
	Summary

	OWL Simplified isiZulu
	Verbaliser implementation
	Evaluation procedure
	Results of external evaluation
	Summary

	Discussion

	Conclusion
	Revisiting research questions
	Contributions
	Further research
	Template creation and management tools
	Automated tools for approach selection
	Coverage for other Nguni languages
	NLG systems with mixed methods, resource reuse, and evaluation

	ToCT Competency questions and queries
	Survey materials
	Bibliography

